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Conventional 3DFSE™

e Spatial blurring due to T2 decay
 Single image contrast per scan

*J.P. Mugler et al., JIMRI 2014. doi: 10.1002/mrm.24542
*R.F. Busse et al., MBRM 2006. doi: 10.1002/mrm.20863
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. Compressed sensing in relaxation dimension
T2 Shuffling*

Randomly shuffled echo trains
Echo Trains
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Volumetric, multi-contrast reconstruction

* Resolves T2 relaxation curve
« Reduces image blur
* Increases scan efficiency
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*J.I. Tamir et al., MRM 2016. doi: 10.1002/mrm.26102 -
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T2 Shuffling*

Reconstruction”
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1. Low rank (handcrafted) prior d

2. Limited ability to represent prior distribution

*J.1. Tamir et al., MBRM 2016. doi: 10.1002/mrm.26102
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“True” Prior Distribution Over MR Images
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Generative models are powerful image generators

https://thiscatdoesnotexist.com
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Generative models are powerful image generators

Generative model trained on FastMRI data
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Purpose

Investigate the feasibility and effectiveness of score
based generative models as a prior for Multi-Contrast
3D Fast Spin-Echo T2 Shuffling Reconstruction
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Generative Modeling

* Goal: Use deep networks to learn the prior distribution

Samples from p(x)

* Decouple statistical image prior from measurement model

* Apply Bayesian principles for reconstruction, p(x|y)

A Bora et al., ICML 2017. Y Song and S Ermon, NeurlPS 2019. P Dhariwal and A Nichol,
arXiv:2105.05233. RV Marinescu et al., arXiv:2012.04567, 2021.
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Proposed Approach: score-based generative models

* Don’t actually need the prior, only the grad-log of it

.1
*E.g, MAP: 1IN E |y — Ax]|5 — log p(x)
. AY (Ax —y)
* Gradient:
radien - \VIng(X)’
? v

Score function

* |dea: use deep networks to learn the score function

Abstract # 0168 Kumar et al., Score-Based Priors for T2 Shuffling Reconstruction



Score-based generative models

X
(image) Score-based V' log px(x)
generative model >
sg (x)

High density

Low density region region

A Hyvarinen, JMLR 2005, Y Song et al., UAI 2018, Vincent et al., MIT Press 2011, Y Song et al., NeurIPS 2019. P Dhariwal et al,. NeurIPS 2021.
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MRI recon with score-based models

X
(Complex-valued
image) Score-based V log py(x)
—| generative model p——
sg(x)

Posterior sampling x~py(x|y):

Xty1 < X T a(AH (y — Ax,) + sg (x4 Ut)) T 4/ 2 0%

,~N(,I), t=0..N

data consistency, source prior, , hyperparameters

Y Song and S Ermon, NeurlPS 2019, A Jalal et al, ICML 2021. A Jalal, M Arvinte, et al, NeurlIPS 2021.
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Challenges

1. K-space training set is highly undersampled

Only train on first coefficient image
Coeff 1 Coeff 2 Coeff 3

Assume same prior for all coefficients:

Vlogp(ai,az,a3) = »  Vlogp(a;)

Abstract # 0168 Kumar et al., Score-Based Priors for T2 Shuffling Reconstruction



Methods

Data:

* MRI T2Sh basis coefficients images with IRB approval':?

* Images reconstructed with Bart?

* Training: 50 subjects with 100 slices per subject

 Test: Separate subject, k-space data generated with forward operator*

Network:
* Trained NCSNv2~ as score prior

Evaluation:
 Compared with T2sh reconstruction acting as “ground truth”

 Metric: NRMSE and qualitative comparison

[1] J Tamir et. al, IMRI 2019. [2] S Bao et. al, JMRI 2017. [3] M Uecker, BART v0.4.04. [4] E. Shimron et. al, PNAS 2022. [5] Y Song. et. al, Neurips 2020
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Results: Posterior sampling reconstruction process

o
‘1 .

Coeff Coeff
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Results: Basis coefficient Comparison

Ground Truth Score Model

Diff. X10

Coeff 1

Coeff 2

Coeff 3
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Results: Time Series Comparison
TE=0
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T2-shuffling
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Discussion and Conclusion

T2-Shuffling 3DFSE Acquisition:
v" Provides sharp multi-contrast images
XLocal low-rank prior has limited expressivity

Score-Based Deep Generative Prior:

v"Promising approach for modeling multi-contrast sequences
v'Provides informative prior decoupled from underlying acquisition

Next Steps:
» Refine approach for raw k-space data'

* |Investigate image quality for higher accelerations (~5min) and resolutions
(~0.5mm)

1 Kumar et al. ISMRM Sedona workshop 2023
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