
Splitwiser
Efficient LLM inference with Constrained Resources

Computer Systems and Machine Learning

Asad Aali, Adney Cardoza, Melissa Capo

Electrical and Computer Engineering

Goal of Project

Receive the benefits of Split Phase Inference

using just a single GPU

alleviating the overhead of moving data between multiple GPUs.

Profiling Results

● From our midterm profiling results, it was evident that splitting phases
enabled a much lower end to end inference time.

● Additionally, the programming model for coordinating tasks across devices is
fairly specified. However, fine grained resource management on single
device requires non-trivial effort.

● This talk will provide some GPU specific background before explaining our
solution attempts.

GPU Specific Background

● Parallel Processing Capable
Architecture

● Compute Execution Procedure
○ Copy required input data onto device

memory
○ Execute compute defined by a CUDA

kernels
○ Copy back output to host memory

GPU Specific Background

- Relevant Metrics
- Using profiling tool: nvtx - sm_throughput, dram_throughput

- Multiprocessing/MPS
- Multiprocessing - perspective of CPU scheduling of compute related to task.
- MPS - spawns one server, and multiple kernels are wrapped inside MPS client, hence GPU

resources can be throttled as required.
- Device Memory Optimization

- All processes share the same model - no duplication → space savings

Solution Attempt 1: Sending data between processes

- Big overhead - 8GB file
- Lots of synchronization overhead, lesser performance.
- Interprocess communication for big objects is not possible without involving

host -> big disadvantage

Solution Attempt 2: Coarse Grained Scheduler

A. Hugging Face Pipeline + MP/MPS
B. vLLM + MP/MPS

Splitwiser Inference with Hugging Face

● Model: OPT-125
● Dataset: Radiology (CT and MR) reports from MIMIC-III

○ De-identified and publicly-available collection of medical records

○ 30,000 pre-processed inputs

● Max Input Tokens: 512

● Max Output Tokens: 20

● GPU:
○ A10

○ A100

● Batch Size: 20

Source: https://physionet.org/content/mimiciii/1.4/

https://physionet.org/content/mimiciii/1.4/

Feature Hugging Face Transformers Splitwise Paper
Separation
Level Partial Full

Functionality
Preprocess prompt, use
encoded input in token gen

All tokens in input prompt run through the forward
pass of the model to generate the first output token

Hardware
Utilization

Potentially move some processing
off main GPU Utilize GPU

Comparing Hugging Face with Splitwise
Implementation

Sequential (1 Process)

Sequential (1 Process)

Phases

Prompt
ProcessingBatch Input

Sequential (1 Process)

Phases

Prompt
Processing

Token
GenerationBatch Input Batch Output

Time

Nsight Output

Prompt
Processing

Sequential (1 Process)

Time

Token
Generation

Nsight Output

Sequential (1 Process)

Prompt
Processing

Batch 1

Batch N

Splitwiser Design

Batch 1 Prompt
Batch 1

Batch N

Splitwiser Design

Batch 1 Prompt
Batch 1 Token Generation Batch 1

Prompt
Batch 2

Batch N

Splitwiser Design

Batch 1 Prompt
Batch 1 Token Generation Batch 1

Prompt
Batch 2 Token Generation Batch 2

Prompt
Batch 3

Batch N Output NPrompt Batch N

Output 1

Splitwiser Design

Token Generation Batch 3

Parallel Processes -> Higher Throughput

Batch 1 Prompt
Batch 1 Token Generation Batch 1

Prompt
Batch 2 Token Generation Batch 2

Prompt
Batch 3

Batch N Output NPrompt Batch N

Output 1

Splitwiser Design

Splitwiser (Implementation)

Nsight
Output

Splitwiser (Implementation)

First Token
Generation

Nsight
Output

Prompt 2
Starts

Splitwiser (Implementation)

Nsight
Output

Second Token
Generation

Prompt 3
Starts

Splitwiser (Implementation)

Nsight
Output

Waiting for all
processes to

finish

Splitwiser (Implementation)

Nsight
Output

Parallel Token
Generation

Splitwiser (Implementation)

Solution Attempt 2A - Hugging Face
Pipeline

Experiments and Results

~ 23
seconds

Initial
Overhead

Steady State Throughput

Combined Throughput (x4)

~ 1.1x improvement in Throughput

Changing
#

 of
Parallel

Processes

Time
Savings

GPU
A100

Time
Savings

GPU
A100

Time
Savings

GPU
A100

Time
Savings

GPU
A100

Time
Savings

GPU
A100

~ 12%

Time
Savings

GPU
A100

~ 12%
~ 4%

Time
Savings

GPU
A100

~ 12%
~ 4% ~ 2.4%

Time
Savings

GPU
A100

~ 12%
~ 4% ~ 2.4%

~ 17.6%
Time

Savings

GPU
A100

Time
Savings

GPU
A10

Time
Savings

GPU
A10

~ 18.2%

Time
Savings

GPU
A10

Solution Attempt 2B - vLLM + MP

Experiments and Results

vLLM Overview

● What: vLLM is the Python library for LLM inference servicing which the
original Splitwise paper extends from

● Why: vLLM greatly speeds up multiple inference request servicing with
techniques such as PagedAttention and Continuous Batching

vLLM Scheduler Each Step:

Schedule batch of requests in
prompt phase (1 per req.)

Schedule batch of requests in
token phase (N per req.)

Per request: Fetch/process input
tokens

Per request: Fetch/process KV
cache

Merge requests’ inputs into single
set of input tensors

Process merged tensors through
LLM Sampler

Separate Sampler output per
request

Schedule

Pre-process

Compute

Post-process

Merge requests’ inputs into single
set of input tensors

Process merged tensors through
LLM Sampler

Separate Sampler output per
request

Run Prompt Phase Run Token Phase
OR

vLLM Potential Improvement

● vLLM currently implements Continuous Batching, but throughput could be
further maximized with Mixed Batching

Continuous Mixed

vLLM Experiments Setup

● Model: opt-125m
● Input token size: 1024
● Output token size: 1024
● GPU: NVIDIA A10
● Batch Size: [10, 20, 40, 80, 160]

vLLM Process 1 Prompt
Batch 1 Token Generation Batch 1

Prompt
Batch 2 Token Generation Batch 2vLLM Process 2

Attempt #1: vLLM + Multiprocessing

MPS Server

● Idea: Similar to previous Hugging Face + MP approach, run separate
inference batches on separate processes to obtain parallelism

● Implementation:
○ MPx2: Instantiate a shared model, spawn 2 processes each running vLLM using the shared model

○ MPSx2: Same as above, but each process is a MPS client

● Results:

Attempt #1: vLLM + Multiprocessing
Just MP is slower, but
enabling MPS we get

1.42x speedup

MP(S) process will take longer to process
its batch than SP w/ same batch size

At lower batches, MP
hit w/ initialization

overhead

1.42x

Attempt #1: vLLM + Multiprocessing

● MP vs MPS: Possibly the benefit of MP throughput is lost from GPU context
switching overhead, thus w/ MPS the latency is reduced

● Minimal src code modifications (shared model)

● Not scalable: # processes and max batch size will be limited by GPU memory
(more obvious using larger model like llama2-7b)

○ vLLM running on single process has whole context of GPU device usage and scheduler designed to
maximize accordingly

○ Can explore MP at lower-level, the vLLM scheduler…

Attempt #2: vLLM Scheduler + Multiprocessing

Schedule batch of requests in
prompt phase (1 per req.)

Schedule batch of requests in
token phase (N per req.)

Per request: Fetch/process input
tokens

Per request: Fetch/process KV
cache

Merge requests’ inputs into single
set of input tensors

Process merged tensors through
LLM Sampler

Separate Sampler output per
request

Schedule

Pre-process

Compute

Post-process

Merge requests’ inputs into single
set of input tensors

Process merged tensors through
LLM Sampler

Separate Sampler output per
request

Run Prompt Phase Run Token Phase
AND

Attempt #2: vLLM Scheduler + Multiprocessing

● Implementation:
○ Modify scheduler to schedule both prompt and token phase batches
○ Spawn 2nd process to process prompt phase when both phases scheduled
○ Remove swapping (due to process spawning issues)
○ Remove CUDA graphs usage (due to process spawning issues)

● Result: Process spawning results in significant overhead/complications from
replicating parent process objects. Not reasonable to create process
on-demand.

Future Attempts: vLLM Scheduler (+MP?)

1. Instantiate the on-demand prompt process only once and use queues to pass
inputs/outputs/required updates (block tables to locate data in memory)
a. This second process will look like a slimmed down client vLLM that is only interacting with the

queues to main vLLM process for processing jobs
b. However, must be careful of communication/synchronization overhead: main process should

continue working asynchronously if communication pending
2. Extending attempt #1: Write a scheduler that manages load between multiple

vLLM processes
3. The only phase-specific processing step is pre-processing. Investigate if

there’s an efficient solution to merge the pre-processing of both the token and
prompt phases.

Schedule batch of requests in
prompt phase (1 per req.)

Schedule batch of requests in
token phase (N per req.)

Per request: Fetch/process input
tokens/KV cache

Merge requests’ inputs into single
set of input tensors

Process merged tensors through
LLM Sampler

Separate Sampler output per
request.

Schedule

Pre-process

Compute

Post-process

Proposal #2: vLLM Mixed Scheduler (no MP)

Run Prompt Phase Run Token PhaseAND

● The recommended way to improve efficiency is to first maximize GPU kernels
directly (better kernels, batch input for compute).

● Then, MP(S) can be explored at the next level of granularity such that you will
likely have multiple kernels executing simultaneously

○ No gain if CPU doesn’t launch next kernel fast enough
○ If GPU utilization already high, CUDA schedules kernels sequentially
○ You only see the benefit of MP once you run it for a large number of inference steps

■ The benefit of improvement in steady-state throughput outweighs the cost of initial MP
overhead over large number of iterations

● Applying MP to integrate with a developed scheduler/resource manager like
vLLM is non-trivial

Lessons Learned

Thank You!

