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Goal of Project

Receive the benefits of Split Phase Inference 

using just a single GPU

alleviating the overhead of moving data between multiple GPUs.



Profiling Results

● From our midterm profiling results, it was evident that splitting phases 
enabled a much lower end to end inference time.

● Additionally, the programming model for coordinating tasks across devices is 
fairly specified. However, fine grained resource management on single 
device requires non-trivial effort.

● This talk will provide some GPU specific background before explaining our 
solution attempts.



GPU Specific Background

● Parallel Processing Capable 
Architecture

● Compute Execution Procedure
○ Copy required input data onto device 

memory
○ Execute compute defined by a CUDA 

kernels
○ Copy back output to host memory



GPU Specific Background

- Relevant Metrics
- Using profiling tool: nvtx - sm_throughput, dram_throughput

- Multiprocessing/MPS
- Multiprocessing - perspective of CPU scheduling of compute related to task.
- MPS - spawns one server, and multiple kernels are wrapped inside MPS client, hence GPU 

resources can be throttled as required.
- Device Memory Optimization

- All processes share the same model - no duplication → space savings



Solution Attempt 1: Sending data between processes

- Big overhead - 8GB file
- Lots of synchronization overhead, lesser performance.
- Interprocess communication for big objects is not possible without involving 

host -> big disadvantage



Solution Attempt 2: Coarse Grained Scheduler

A. Hugging Face Pipeline + MP/MPS
B. vLLM + MP/MPS



Splitwiser Inference with Hugging Face

● Model: OPT-125
● Dataset: Radiology (CT and MR) reports from MIMIC-III

○ De-identified and publicly-available collection of medical records

○ 30,000 pre-processed inputs

● Max Input Tokens: 512

● Max Output Tokens: 20

● GPU:
○ A10

○ A100

● Batch Size: 20

Source: https://physionet.org/content/mimiciii/1.4/

https://physionet.org/content/mimiciii/1.4/


Feature Hugging Face Transformers Splitwise Paper
Separation 
Level Partial Full

Functionality
Preprocess prompt, use 
encoded input in token gen

All tokens in input prompt run through the forward 
pass of the model to generate the first output token

Hardware 
Utilization

Potentially move some processing 
off main GPU Utilize GPU

Comparing Hugging Face with Splitwise 
Implementation
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Token Generation Batch 3

Parallel Processes -> Higher Throughput
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Splitwiser (Implementation)
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Solution Attempt 2A - Hugging Face 
Pipeline

Experiments and Results





~ 23 
seconds





Initial 
Overhead



Steady State Throughput



Combined Throughput (x4)





~ 1.1x improvement in Throughput
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Solution Attempt 2B - vLLM + MP

Experiments and Results



vLLM Overview

● What: vLLM is the Python library for LLM inference servicing which the 
original Splitwise paper extends from

● Why: vLLM greatly speeds up multiple inference request servicing with 
techniques such as PagedAttention and Continuous Batching



vLLM Scheduler Each Step:

Schedule batch of requests in 
prompt phase (1 per req.)

Schedule batch of requests in 
token phase (N per req.)

Per request: Fetch/process input 
tokens 

Per request: Fetch/process KV 
cache

Merge requests’ inputs into single 
set of input tensors

Process merged tensors through 
LLM Sampler

Separate Sampler output per 
request

Schedule

Pre-process

Compute

Post-process

Merge requests’ inputs into single 
set of input tensors

Process merged tensors through 
LLM Sampler

Separate Sampler output per 
request

Run Prompt Phase Run Token Phase
OR



vLLM Potential Improvement

● vLLM currently implements Continuous Batching, but throughput could be 
further maximized with Mixed Batching

Continuous Mixed



vLLM Experiments Setup

● Model: opt-125m
● Input token size: 1024
● Output token size: 1024
● GPU: NVIDIA A10
● Batch Size: [10, 20, 40, 80, 160]



vLLM Process 1 Prompt 
Batch 1 Token Generation Batch 1

Prompt 
Batch 2 Token Generation Batch 2vLLM Process 2

Attempt #1: vLLM + Multiprocessing

MPS Server

● Idea: Similar to previous Hugging Face + MP approach, run separate 
inference batches on separate processes to obtain parallelism

● Implementation:
○ MPx2: Instantiate a shared model, spawn 2 processes each running vLLM using the shared model

○ MPSx2: Same as above, but each process is a MPS client



● Results:

Attempt #1: vLLM + Multiprocessing
Just MP is slower, but 
enabling MPS we get 

1.42x speedup

MP(S) process will take longer to process 
its batch than SP w/ same batch size

At lower batches, MP 
hit w/ initialization 

overhead

1.42x



Attempt #1: vLLM + Multiprocessing

● MP vs MPS: Possibly the benefit of MP throughput is lost from GPU context 
switching overhead, thus w/ MPS the latency is reduced

● Minimal src code modifications (shared model)

● Not scalable: # processes and max batch size will be limited by GPU memory 
(more obvious using larger model like llama2-7b)

○ vLLM running on single process has whole context of GPU device usage and scheduler designed to 
maximize accordingly

○ Can explore MP at lower-level, the vLLM scheduler…



Attempt #2: vLLM Scheduler + Multiprocessing

Schedule batch of requests in 
prompt phase (1 per req.)

Schedule batch of requests in 
token phase (N per req.)

Per request: Fetch/process input 
tokens 

Per request: Fetch/process KV 
cache

Merge requests’ inputs into single 
set of input tensors

Process merged tensors through 
LLM Sampler

Separate Sampler output per 
request

Schedule

Pre-process

Compute

Post-process

Merge requests’ inputs into single 
set of input tensors

Process merged tensors through 
LLM Sampler

Separate Sampler output per 
request

Run Prompt Phase Run Token Phase
AND



Attempt #2: vLLM Scheduler + Multiprocessing

● Implementation: 
○ Modify scheduler to schedule both prompt and token phase batches
○ Spawn 2nd process to process prompt phase when both phases scheduled
○ Remove swapping (due to process spawning issues)
○ Remove CUDA graphs usage (due to process spawning issues)

● Result: Process spawning results in significant overhead/complications from 
replicating parent process objects. Not reasonable to create process 
on-demand.



Future Attempts: vLLM Scheduler (+MP?)

1. Instantiate the on-demand prompt process only once and use queues to pass 
inputs/outputs/required updates (block tables to locate data in memory)
a. This second process will look like a slimmed down client vLLM that is only interacting with the 

queues to main vLLM process for processing jobs
b. However, must be careful of communication/synchronization overhead: main process should 

continue working asynchronously if communication pending 
2. Extending attempt #1: Write a scheduler that manages load between multiple 

vLLM processes
3. The only phase-specific processing step is pre-processing. Investigate if 

there’s an efficient solution to merge the pre-processing of both the token and 
prompt phases.



Schedule batch of requests in 
prompt phase (1 per req.)

Schedule batch of requests in 
token phase (N per req.)

Per request: Fetch/process input 
tokens/KV cache 

Merge requests’ inputs into single 
set of input tensors

Process merged tensors through 
LLM Sampler

Separate Sampler output per 
request.

Schedule

Pre-process

Compute

Post-process

Proposal #2: vLLM Mixed Scheduler (no MP)

Run Prompt Phase Run Token PhaseAND



● The recommended way to improve efficiency is to first maximize GPU kernels 
directly (better kernels, batch input for compute). 

● Then, MP(S) can be explored at the next level of granularity such that you will 
likely have multiple kernels executing simultaneously 

○ No gain if CPU doesn’t launch next kernel fast enough
○ If GPU utilization already high, CUDA schedules kernels sequentially
○ You only see the benefit of MP once you run it for a large number of inference steps

■ The benefit of improvement in steady-state throughput outweighs the cost of initial MP 
overhead over large number of iterations

● Applying MP to integrate with a developed scheduler/resource manager like 
vLLM is non-trivial

Lessons Learned



Thank You!


