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1. The output may contain errors
2. The output may not be safe for deployment
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Introduction

The adoption of AI for medical applications necessitates reliable risk assessment



1. Time-consuming / expensive
2. Not scalable
3. Physician fatigue
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Introduction

Physician

Review

Potential Solution 1



Automated methods rely on:

1. Expert-labeled training data
2. Ground truth outputs for 

comparison (similarity metrics)
3. Retrieval-based evidence

Automated Review

via

1. Similarity Metrics

2. LM-as-a-judge
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Potential Solution 2
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         Review (Related Works)
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Introducing MedVAL
Medical Text Validator (≠ Evaluator)

Medical text validation: Determining whether an AI’s output is factually consistent with the input (binary)

vs

Medical text evaluation: Assessing several attributes of an AI’s output (conciseness, comprehensiveness)
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● A self-supervised framework that leverages synthetic data to train LMs for robust medical text validation

○ Involves curating high-quality synthetic training examples

○ Leverages the agreement between a generator and a validator LM as a proxy for physician judgment

● MedVAL assesses whether an output is factually consistent with the input

○ Assigns one of four risk levels

○ Flags "unsafe for deployment" outputs at near physician-level reliability
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Introducing MedVAL
1. Scalable training without physician-in-loop supervision

2. Medical text assessment in the absence of reference outputs or retrieval

3. Multilingual evaluation

4. Interpretable, expert-aligned assessments



1. A general-purpose, self-supervised framework for training LMs to validate factual consistency

2. MedVAL-Bench dataset:
○ A dataset containing 840 physician-labeled evaluations of AI-generated medical text

○ Performed by 12 physicians spanning 6 diverse medical text generation tasks

3. MedVAL performance benchmark:
○ MedVAL fine-tuning improves the validation capabilities of all underlying LMs

○ MedVAL yields significant gains (p < 0.001): average baseline F1 scores for:

■ Safe/unsafe classification improve from 66.2% to 82.8%
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Contributions
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MedVAL Training - Algorithm
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Perturbation Strategies
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MedVAL-Bench

1. Fully open-source
2. In-distribution1. Partially open-source

2. Out-of-distribution

● A dataset for training and evaluation of medical text validators
● Contains: (1) inputs, (2) outputs, (3) physician assessments (only test)
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MedVAL-Bench - Tasks



51Confidential

MedVAL-Bench - Tasks



52Confidential

MedVAL-Bench - Tasks



53Confidential

MedVAL-Bench - Tasks



54Confidential

MedVAL-Bench - Tasks



55Confidential

MedVAL-Bench - Tasks



MedVAL-Bench - Physician Study



MedVAL-Bench - Physician Study
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Results
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Overall Performance (F1 Classification Score)



60Confidential

Overall Performance (F1 Classification Score)



61Confidential

Overall Performance (F1 Classification Score)



62Confidential

Overall Performance (F1 Classification Score)
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Risk-Level Classification Performance
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Task-Wise Performance



65Confidential
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Safety (Binary) Classification Performance
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Safety (Binary) Classification Performance
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Example:
Impression (Input) -> Patient Friendly (Output)
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Example:
Impression (Input) -> Patient Friendly (Output)
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Example:
Dialogue (Input) -> Assessment and Plan (Output)



● We introduce MedVAL, a generalizable, self-supervised framework for validating LM-generated medical text

● Across all settings, MedVAL improved average F1 scores for all underlying models

● Risk-level analysis revealed that MedVAL enhances model sensitivity
○ particularly at intermediate risk levels (2–3), which are critical for deciding human review.

● Task-wise results confirmed strong generalization across in-distribution and out-of-distribution settings

● Notably, MedVAL displayed strong improvements on dialogue2note
○ the longest input context (average 1.5k tokens) out-of-distribution task
○ showing robustness on challenging, real-world medical tasks.
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Conclusion
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● Paper: https://arxiv.org/abs/2507.03152
● Code: https://github.com/StanfordMIMI/MedVAL
● MedVAL-Bench Dataset: https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench
● MedVAL-4B Model: https://huggingface.co/stanfordmimi/MedVAL-4B
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Open-Source

https://arxiv.org/abs/2507.03152
https://github.com/StanfordMIMI/MedVAL
https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench
https://huggingface.co/stanfordmimi/MedVAL-4B
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