MAY 2024

GSURE Denoising enables training of higher quality generative priors for accelerated Multi-Coil MRI Reconstruction

Authors: Asad Aali¹, Marius Arvinte², Sidharth Kumar¹, Yamin Arefeen¹, Jon Tamir¹ ¹The University of Texas at Austin ²Intel Labs

- Deep Diffusion Probabilistic (Generative) Models are powerful tools for accelerated MRI reconstruction
 - ✓ Exploit large training databases
 - ✓ Decouples from the forward model

Song NeurIPS (2019), Kingma ICLR (2014), Goodfellow NeurIPS (2014)

• Generative models learn priors for MR images.

Abstract # 6069

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

Sample from Image Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

Sample from Image Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

Sample from Image Distribution

• Generative Models to guide accelerated MRI reconstructions. "High Probability Images" p(x)

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

Training Data: Multi-coil K-space

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

Training Data: Multi-coil K-space

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

- Training generative models with noisy datasets leads to a poor prior.
- Reconstruction performance depends on accuracy of priors

Training Dataset

Training Dataset

- Training generative models with noisy datasets leads to a poor prior.
- Reconstruction performance depends on accuracy of priors

Sample from Image Distribution

Motivation Application in real world datasets: low field neo-natal MRI

- Training generative models with noisy datasets leads to a poor prior.
- Reconstruction performance depends on accuracy of priors

Sample from Image Distribution

Purpose

Learn model to denoise dataset before training generative models

Training a denoiser without access clean training samples.

Investigate the **effectiveness** of self-supervised **denoising** as a preprocessing step to learning **generative priors** for accelerated MRI reconstruction

Goal is to learn the **clean distribution** using fully-sampled, multi coil *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = FSx + noise

Goal is to learn the **clean distribution** using fully-sampled, multi coil *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = FSx + noise

Original K-Space

Goal is to learn the **clean distribution** using fully-sampled, multi coil *noisy* data (i.i.d Gaussian, with known power σ_w^2).

Original K-Space

Coil Images

Goal is to learn the clean distribution using fully-sampled, multi coil noisy data (i.i.d Gaussian, with known power σ_w^2).

Coil Images

Noisy MRI Sample

Abstract # 6069

Problem Formulation

Abstract # 6069

Self-Supervised Denoising

Training a denoiser with only access to noisy data

A is a Linear Forward Operator (Fully-Sampled) -> **GSURE**^{1,2,3}

$$y = FSx + noise$$

¹Soltanayev, NeurIPS, 2018, ²Eldar, IEEE Transactions on Signal Processing, 2008, ³Kawar, TMLR, 2023

Abstract # 6069

Generalized SURE (GSURE) Basics

- GSURE¹: Self-supervised denoising technique, only need access to:
 - $-\hat{x}_{noisy} \rightarrow$ Noisy Samples
 - Noise Covariance Matrix
- An unbiased estimate of the MSE

$$E[\mathcal{L}_{GSURE}] = E \| g_{\phi}(\hat{x}_{noisy}) - x \|$$

- GSURE loss requires the **noise covariance** matrix
- Pre-whitening (noise covariance = I) makes computation relatively straight-forward

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Original K-Space

Kellman MRM (2005)

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Kellman MRM (2005)

Abstract # 6069

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Kellman MRM (2005)

Abstract # 6069

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Abstract # 6069

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

GSURE Denoising - Summary

Abstract # 6069

Abstract # 6069

Diffusion Probabilistic (Generative) Model Details

- Score-based models¹
- Trained with denoising score matching⁴
- Posterior sampling (MRI reconstruction) with annealed Langevin dynamics⁶

¹Hyvarinen, JMLR 2005 ²Song, UAI, 2018 ³Vincent, MIT Press 2011 ⁴Song, NeurIPS 2019 ⁵Dhariwal, NeurIPS 2021 ⁶Jalal NeurIPS 2021

Experiments

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- **2. Prior sampling** performance of score models trained on Noisy vs. GSURE Denoised data
- **3.** Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Experiments

1. Evaluation of **Self-Supervised Denoising** (GSURE)

Experimental Details:

- Brain:
 - 10,000 2D T₂-weighted brain samples
- Knee:
 - 2,000 2D fat-suppressed knee
- Learned Denoiser Architecture: NCSNv2 (Song NeurIPS 2020)

Original FastMRI

Original FastMRI

Original FastMRI

Original FastMRI

Abstract # 6069

Evaluation - Denoising

Original FastMRI

Original FastMRI

+ Additive Gaussian Noise

Abstract # 6069

Evaluation - Denoising

Knee Scans

Original FastMRI

Original FastMRI

+ Additive Gaussian Noise

Evaluation - Denoising

Results

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- **2. Prior sampling** performance of score models trained on Noisy vs. GSURE Denoised data
- **3.** Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Results

1. Evaluation of **Self-Supervised Denoising** (GSURE)

2. Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data

Experimental Details:

- Score Model Trained on noisy and denoised versions of the 10,000 sample T₂ Brain dataset.
- Score-Model Architecture: NCSNv2 (Song NeurIPS 2020)

Naive Score ~ 32 dB

Naive Score ~ 32 dB

GSURE- Score ~ 32 dB

Naive- Score ~ 22 dB

GSURE- Score ~ 22 dB

Results

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- **2. Prior sampling** performance of score models trained on Noisy vs. GSURE Denoised data
- **3.** Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Results

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- **2. Prior sampling** performance of score models trained on Noisy vs. GSURE Denoised data
- **3.** Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Experimental Details

• 100 retrospectively under-sampled 2D T₂ Brain validation samples

Posterior Sampling $x \sim p(x|y)$

Fully-Sampled

Abstract # 6069

Posterior Sampling $x \sim p(x|y)$

Fully-Sampled

R = 5

Naive Score @ 22dB

NRMSE: 0.228

GSURE-Score @ 22dB

Abstract # 6069

Posterior Sampling $x \sim p(x|y)$

Naive Score @ 22dB

NRMSE: 0.228

GSURE-Score @ 22dB

×10

Naive Score @ 32dB

NRMSE: 0.097

GSURE-Score @ 32dB

NRMSE: 0.09

Abstract # 6069

Accelerated MRI Reconstruction with Posterior Sampling $x \sim p(x|y)$

Accelerated MRI Reconstruction with Posterior Sampling $x \sim p(x|y)$

Discussion and Conclusion

1. GSURE Denoising as a pre-processing step helps train more **accurate priors** which are better **inverse problem solvers** than naive training.

- 2. The benefit of denoising is more visible in **lower SNR** settings
- 3. Important to investigate tradeoff between noise and distortion
- 4. Applicable to other learning settings (e.g. end-to-end methods)

Future Works

A is a Linear Forward Operator (Fully-Sampled) -> GSURE^{1,2,3}

$$y = FSx + noise$$

¹Soltanayev, NeurIPS, 2018, ²Eldar, IEEE Transactions on Signal Processing, 2008, ³Kawar, TMLR, 2023, ⁴Aali, AmbientDPS, Arxiv, 2024

Future Works

A is a Linear Forward Operator (Fully-Sampled) -> GSURE^{1,2,3}

$$y = FSx + noise$$

Assume A is a **Low-Rank** Forward Operator⁴

$$y = \mathbf{P}FSx + noise$$

¹Soltanayev, NeurIPS, 2018, ²Eldar, IEEE Transactions on Signal Processing, 2008, ³Kawar, TMLR, 2023, ⁴Aali, AmbientDPS, Arxiv, 2024

Abstract # 6069

Future Works

Application in real world datasets: low field neo-natal MRI

Training Dataset Sample from Image Distribution Generative ••• Model

*Scans courtesy of Aspect Imaging Aspect Embrace 1T Scanner Installed at SZMC, Israel

Abstract # 6069

Thank you!

Asad Aali Email: <u>asad.aali@utexas.edu</u> Website: <u>https://asadaali.com/</u> MS ECE, UT Austin

Source Code: <u>https://github.com/utcsilab/GsureScore-Diffusion.git</u>

