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GSURE Denoising enables training of higher 
quality generative priors for accelerated Multi-Coil 

MRI Reconstruction
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• Deep Diffusion Probabilistic (Generative) Models are powerful tools for 
accelerated MRI reconstruction

ü Exploit large training databases

ü Decouples from the forward model

Motivation

Motivation

Song NeurIPS (2019), Kingma ICLR (2014), Goodfellow NeurIPS (2014)
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Motivation
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Sample from Gaussian Distribution
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~𝒑(𝒙)
Image Prior

~	𝓝(𝒛)

• Generative models learn priors for MR images.
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• Generative Models to guide accelerated MRI reconstructions.
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Motivation

Motivation

Training Dataset

• Generative Models rely on large amounts of  high-quality data.
• MRI data are inherently noisy1,2, multi-coil k-space.

Training Data: Multi-coil K-spaceProcessed Dataset

reconstruction

1FastMRI (https://fastmri.med.nyu.edu/), 2Wang, MRM (2024)

https://fastmri.med.nyu.edu/
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Motivation

Motivation

Generative 
Model

• Training generative models with noisy datasets leads to a poor prior.
• Reconstruction performance depends on accuracy of priors

Training Dataset

training
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Motivation

Motivation

Training Dataset

Generative 
Model

training

• Training generative models with noisy datasets leads to a poor prior.
• Reconstruction performance depends on accuracy of priors

Sample from Image Distribution

Application in real world datasets: low field neo-natal MRI

*Scans courtesy of Aspect Imaging
Aspect Embrace 1T Scanner
Installed at SZMC, Israel
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Purpose

Motivation

Training Dataset

• Learn model to denoise dataset before training generative models

Denoised Training Dataset

Generative 
Model

training

Learned

Denoiser
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Purpose

Motivation

Training a denoiser without access clean training samples.

Investigate the effectiveness of self-supervised denoising as a pre-
processing step to learning generative priors for accelerated MRI 

reconstruction
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Problem Formulation

Problem Formulation
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Goal is to learn the clean distribution using fully-sampled, multi coil noisy data (i.i.d 
Gaussian, with known power 𝜎!" ).

𝑦 = 𝐹𝑆𝑥 + 𝑛𝑜𝑖𝑠𝑒

Problem Formulation

Problem Formulation
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𝐹!𝑦𝑦 !𝑥!"#$% = 𝐴&𝑦

×10

Original K-Space Coil Images Noisy MRI Sample

Problem Formulation

Problem Formulation
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Self-Supervised Denoising
Training a denoiser with only access to noisy data

𝑦 = 𝐹𝑆𝑥 + 𝑛𝑜𝑖𝑠𝑒

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023

Proposed Methods - Denoising
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• GSURE1: Self-supervised denoising technique, only need access to:
– &𝑥!"#$% 	→	Noisy Samples 
– Noise Covariance Matrix

• An unbiased estimate of the MSE

𝐸 L"#$%& = 𝐸 𝑔' )𝑥()*+, − 𝑥

Generalized SURE (GSURE) Basics

1Eldar, IEEE Transactions on Signal Processing, 2008

Proposed Methods - Denoising
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Pre-Processing Noisy Dataset

• GSURE loss requires the noise covariance matrix 
• Pre-whitening (noise covariance = 𝐼) makes computation relatively 

straight-forward

Proposed Methods - Denoising
Kellman MRM (2005)
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GSURE Denoising - Summary

𝑔(("𝑥#$%&')

"𝑥))*+"𝑥#$%&'

×10 ×10

L-*./+

GSURE Training

Proposed Methods - Denoising
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Diffusion Probabilistic (Generative) Model Details

1Hyvarinen, JMLR 2005  2Song, UAI, 2018 3Vincent, MIT Press 2011 4Song, NeurIPS 2019 5Dhariwal, NeurIPS 2021 6Jalal NeurIPS 2021

Proposed Methods – Generative Modeling

• Score-based models1

• Trained with denoising score matching4

• Posterior sampling (MRI reconstruction) with annealed Langevin 
dynamics6
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. GSURE 

Denoised data
3. Accelerated MRI Reconstruction performance of score models trained 

on Noisy vs. GSURE Denoised data

Experiments

Evaluation
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. GSURE 

Denoised data
3. Posterior Reconstruction performance of score models trained on Noisy 

vs. GSURE Denoised data

Experiments

Evaluation

Experimental Details:
• Brain:

- 10,000 2D T2-weighted brain samples
• Knee:

- 2,000 2D fat-suppressed knee

• Learned Denoiser Architecture: NCSNv2 (Song NeurIPS 2020)
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T2 Brain Scans SNR ~ 32dB

Evaluation - Denoising

Original FastMRI
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Original FastMRI 
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Additive Gaussian Noise
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SNR ~ 22dB

Evaluation - Denoising

Original FastMRI



49Abstract # 6069Abstract # 6069

T2 Brain Scans SNR ~ 32dB

SNR ~ 22dB

Evaluation - Denoising

Original FastMRI 
+ 

Additive Gaussian Noise

Original FastMRI



50Abstract # 6069Abstract # 6069

Knee Scans SNR ~ 24dB

SNR ~ 14dB

Evaluation - Denoising

Original FastMRI 
+ 

Additive Gaussian Noise

Original FastMRI
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. GSURE 

Denoised data
3. Posterior Reconstruction performance of score models trained on Noisy 

vs. GSURE Denoised data

Results

Evaluation

Experimental Details:
• Score Model Trained on noisy and denoised versions of the 10,000 sample T2 Brain 

dataset.

• Score-Model Architecture: NCSNv2 (Song NeurIPS 2020)
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Naive Score
~ 32 dB

GSURE- Score
~ 32 dB
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. GSURE 

Denoised data
3. Accelerated MRI Reconstruction performance of score models trained 

on Noisy vs. GSURE Denoised data

Results

Evaluation

Experimental Details
• 100 retrospectively under-sampled 2D T2 Brain validation samples
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Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)

Evaluation – Posterior Sampling

Fully-Sampled

R = 5
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Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)

Evaluation – Posterior Sampling

Fully-Sampled Naive Score @ 22dB GSURE-Score @ 22dB

R = 5 NRMSE: 0.228 NRMSE: 0.108

×10 ×10



59Abstract # 6069Abstract # 6069

Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)

Evaluation – Posterior Sampling

Fully-Sampled Naive Score @ 32dB GSURE-Score @ 32dBNaive Score @ 22dB GSURE-Score @ 22dB

R = 5 NRMSE: 0.097 NRMSE: 0.092NRMSE: 0.228 NRMSE: 0.108

×10 ×10 ×10 ×10
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Accelerated MRI Reconstruction with Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)
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Accelerated MRI Reconstruction with Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)



62Abstract # 6069

Discussion and Conclusion

1. GSURE Denoising as a pre-processing step helps train more accurate priors 
which are better inverse problem solvers than naive training.

2. The benefit of denoising is more visible in lower SNR settings

3. Important to investigate tradeoff between noise and distortion

4. Applicable to other learning settings (e.g. end-to-end methods)

Conclusion
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Future Works

𝑦 = 𝐹𝑆𝑥 + 𝑛𝑜𝑖𝑠𝑒

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023, 4Aali, AmbientDPS, Arxiv, 2024

Future Works
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Future Works

𝑦 = 𝐹𝑆𝑥 + 𝑛𝑜𝑖𝑠𝑒

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

Assume A is a Low-Rank Forward Operator4

𝑦 = 𝑷𝐹𝑆𝑥 + 𝑛𝑜𝑖𝑠𝑒

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023, 4Aali, AmbientDPS, Arxiv, 2024

Future Works
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Application in real world datasets: low field neo-natal MRI

*Scans courtesy of Aspect Imaging
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Installed at SZMC, Israel
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Thank you!

Asad Aali
Email: asad.aali@utexas.edu
Website: https://asadaali.com/

MS ECE, UT Austin

Source Code: https://github.com/utcsilab/GsureScore-Diffusion.git

mailto:asad.aali@utexas.edu
https://asadaali.com/
https://github.com/utcsilab/GsureScore-Diffusion.git

