
q Multi-Coil MRI

Multi-coil MRI data are acquired in the frequency domain by placing multiple RF 
coils around the imaging anatomy

q Multiple-Input Multiple-Output (MIMO) Channels

Point-to-point MIMO baseband communication scenario where transmitters and 
receivers equipped with 𝑁!  and 𝑁"  antennas

q Generative models trained on clean data 
distribution have shown to outperform 
end-to-end supervised deep learning.

q A large collection of clean training data is 
prohibitively expensive to acquire.

q Our method approximately learns a 
generative model of the clean distribution 
from noisy data.

q We present SURE-Score: a novel loss 
function that leverages Stein’s unbiased 
risk estimate (SURE) to jointly denoise the 
data and learn a score function
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Solving Inverse Problems with Score-Based Generative 
Priors learned from Noisy Data

Discussion and Conclusion
q Self-supervised techniques can match supervised techniques 

in denoising and inverse problem performance
q Runtime per iteration increases due to additional pass through 

the network
q Choosing hyper-parameters without access to ground truth 

data is an open challenge

q Next Steps: Our work currently assumes white Gaussian 
noise corruption but could be extended to arbitrary 
exponential families
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Vectorized Image Fourier Sampling

Coil Sensitivity Map

q Using Tweedie’s rule and training 
score models with: (i) Noisy Data 
(Naive), (ii) SURE-Score, and (iii) 
Noise-Free (Supervised) data

q Following table lists NRMSE (𝜇 ± 𝜎) of 
100 validation Multi-Coil MRI slices.

Takeaways: 
q Denoising performance of SURE-

Score nearly matches supervised 
learning 

q Shows consistency between the 
SURE and score-matching objective.

Fig. 1. Flow of SURE-Score during training. The same deep neural network 𝑠! is used first for 
denoising and subsequently for denoising score matching. 

Fig. 3. Channel estimation performance at α = 0.6 (38 pilots) using score models trained on CDL-C 
channels at 𝑆𝑁𝑅!: 0 dB (left) and 10 dB (right).

Fig. 3. Multi-coil MRI reconstruction at acceleration factor of 5×. From left to right: fully sampled ground truth, linear reconstruction, posterior 
sampling after naively training on noisy data at 𝑆𝑁𝑅!, posterior sampling after training with SURE-Score, and posterior sampling after training 
with noise-free data. The bottom row shows the sampling pattern and difference images for each method, respectively.

Posterior Reconstruction – Multi-Coil MRI
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For prior sampling 𝑝 !"""#$, we set A = 0

Fig. 2. Prior sampling for three methods: Naive, 
SURE-Score at 𝑆𝑁𝑅!0 dB, and Supervised. Each 
column is different realization of a CDL-C 
channel.

Posterior Reconstruction – MIMO Channels

q SURE-Score performs close to optimal with respect to supervised DSM except at higher pilot SNR
q Naive training plateaus in estimation performance because of overfitting
q Noise2Score and BM3D suffer at lower 𝑆𝑁𝑅! and improve at higher SNR
q Performance gap at high pilot SNR likely due to performance limits of MMSE denoiser and finite 

training data

Key Takeaways:

q Goal: Learn the score directly from 
noisy measurements 𝑦

𝑦 = 𝐴𝑥 + 𝑛
- Where 𝑛 is a zero-mean Gaussian 
random vector
- 𝐴 is full-rank

Methodology:
q Utilize extended SURE principle to 

obtain unbiased MSE estimate for 
exponential family noise corruption

q Use a single-network to jointly 
denoise the data and learn score-
function
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