TEXAS Solving Inverse Problems with Score-Based Generative

[he University of Texas at Austin

Priors learned from Noisy Data

Asad Aali', Marius Arvinte'2, Sidharth Kumar?, Jonathan I. Tamir?
'Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
2Intel Corporation, Hillsboro, OR, USA

Introduction Forward Models Training SURE-Score

J Multi-Coil MRI ' b aa — n 1171 S ,ii’ 2 - " ~
L) =a (Eg,ni o ||se(H + a;se(H) + n;) + 6—2 ) + (IEH,W [H(fﬁse ()], + 205 divg (H + 01539(11))] )

1 Generative models trained on clean data Vi = Fa SZCC -+ n; 2,
distribution have shown to outperform « > « >
end-to-end supervised deep learning. Multi-coil MRI data are acquired in the frequency domain by placing multiple RF >core Loss Modified SURE Loss
coils around the imaging anatomy ~ - _ g _
: . . Where divg(H + 05s¢(H)) = tr (/5 + s2.5.(7 Eywllifo(H) — H||. + 202divg ( fo (H
Q Alarge collection of clean training data is il o)) =17 (i + ool " 7o) - w (/o)) »
prohibitively expensive to acquire. reCV Vectorized Image | Fo € C*V*Y  Fourier Sampling Where a is appropriate scaling applied to score model Regular SURE Loss
. N XN - gr : : SURE-based d ISI ith D ISi tchi ith
D Our methOd apprOXImateW |eamS a SZ S C § COII SenSItIVIty Map n; GaUSSIan NOISG e enoising with 56 Same model used twice enoising seore matehing With 29

generative model of the clean distribution

from noisy data d Multiple-Input Multiple-Output (MIMO) Channels : o2, n~N(0,0%I) o
' : v Vzlogps o (@50
— 7 | TMMSE * | Generic PyTorch
d We present SURE-Score: a novel loss Y P T N Tl s(0w) Hé (1) »D—> so(;0) > Training Pipslins
function that leverages Stein’s unbiased Point-to-point MIMO baseband communication scenario where transmitters and * E E

risk estimate (SURE) to jOint_Iy denoise the receivers equipped with Nt and M antennas
data and learn a score function

-

P € CN«XNp  Pjlot Measurement iy

H € CN:XDNt Channel State Information

LgURE,p [€---mmmmmmmmmmmm oo » Lpsmg [«

1
[=]

Fig. 1. Flow of SURE-Score during training. The same deep neural network s, is used first for

N Gaussian Noise denoising and subsequently for denoising score matching.
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