
q Generative models trained on clean data 
distribution have shown to outperform 
end-to-end supervised deep learning.

q A large collection of clean training data is 
prohibitively expensive to acquire.

q Our method approximately learns a 
generative model of the clean distribution 
from noisy data.

q We present SURE-Score: a novel loss 
function that leverages Stein’s unbiased 
risk estimate (SURE) to jointly denoise 
the data and learn a score function
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MIMO Channel Estimation with Score-Based Generative 
Priors learned from Noisy Data

Discussion and Conclusion
q Self-supervised techniques can match supervised 

techniques in denoising and inverse problem performance
q Reconstruction performance with and without access to 

ground truth measurements is equivalent at low SNRs and 
comparable at high SNRs

q Next Steps: Our work currently assumes white Gaussian 
noise corruption but could be extended to arbitrary 
exponential families
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Fig. 1. Flow of SURE-Score during training. The same deep neural network 𝑠! is used first for 
denoising and subsequently for denoising score matching. 

Fig. 3. Channel estimation performance at α = 0.6 (38 pilots) using score models trained on CDL-C 
channels at 𝑆𝑁𝑅": 0 dB (left) and 10 dB (right).

Fig. 3. 
Naive: Sampling 
using score model 
trained directly on 
noisy channels

Single-Network 
SURE: Sampling 
using score model 
trained on channels 
denoised using a 
single network

Posterior Reconstruction

Generalized SURE-Score

Fig. 2. Prior sampling 
for three methods: 
Naive, SURE-Score at 
𝑆𝑁𝑅"0 dB, and 
Supervised. Each 
column is different 
realization of a CDL-C 
channel.

Posterior Reconstruction – Benchmarking

q SURE-Score performs close to optimal with respect to supervised DSM except at higher pilot SNR
q Naive training plateaus in estimation performance because of overfitting
q Noise2Score and BM3D suffer at lower 𝑆𝑁𝑅" and improve at higher SNR
q Performance gap at high pilot SNR likely due to performance limits of MMSE denoiser and finite 

training data

Key Takeaways:

q Goal: Learn the score directly from 
noisy measurements 𝑦

𝑦 = 𝐴𝑥 + 𝑛
- Where 𝑛 is a zero-mean Gaussian 
random vector
- 𝐴 is full-rank

Methodology:
q Utilize extended SURE principle to 

obtain unbiased MSE estimate for 
exponential family noise 
corruption

q Use a single-network to jointly 
denoise the data and learn score-
function

ArXiv Link

Generic PyTorch 
Training Pipeline

Wireless System Theory
qMIMO forward model:

qNarrowband, point-to-point MIMO 
communication scenario

qChannel estimation requires estimating 𝐻, using 
the received pilot matrix 𝑌, while having 
knowledge of the transmitted pilot matrix 𝑃

Channel state information matrix

Pilot symbol, P = (𝑝!, 𝑝", . . , 𝑝#), where 𝑏 = 𝛼$%&'( ∗ 𝑁(

Complex Additive White Gaussian Noise

Example Clustered Delay Line (CDL-C) channel (magnitude)

!𝐻 = 𝐻 +w,	𝑤	~	𝑁 0, 𝜎!"𝐼

MIMO, CDL-C, 16x64, α = 0.6 (38 pilots), 𝑆𝑁𝑅ʷ = 0.0 dB, Pilot 𝑆𝑁𝑅 = 0.0 dB

Let 𝑝𝐻 denote the 
distribution of MIMO 

(CDL-C) channels for a 
stochastic environment. 

𝐻	~	𝑝(𝐻|𝑌)


