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About Me

• Research Scientist at Stanford University

• Lab: Machine Intelligence for Medical Imaging (MIMI)

• Advisor: Akshay Chaudhari

• Passionate about developing machine learning algorithms for 

healthcare applications

• Research Interests:

• Machine Learning

• Foundation Models

• Healthcare
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Plan for Today

Detecting underdiagnosed medical conditions via opportunistic imaging

Optimizing LLM performance in clinical documentation tasks

Solving medical imaging inverse problems by learning from corrupted data
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1. Solving medical 
imaging inverse 
problems by learning 
from corrupted data



Relevant Publications:
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1. Solving inverse problems with generative priors learned from noisy data
a. Poster presentation, IEEE Asilomar 2023

2. GSURE Denoising enables training of higher quality generative priors for 
accelerated Multi-Coil MRI Reconstruction
a. Oral presentation, ISMRM 2024

3. Ambient Diffusion Posterior Sampling: Solving Inverse Problems with 
Diffusion Models Trained on Corrupted Data
a. Poster presentation, ICLR 2024

4. Enhancing Deep Learning-Driven Multi-Coil MRI Reconstruction via 
Self-Supervised Denoising
a. Currently in review

https://ieeexplore.ieee.org/abstract/document/10477042
https://asadaali.com/assets/html/ismrm24/gsure-score
https://asadaali.com/assets/html/ismrm24/gsure-score
https://openreview.net/pdf?id=qeXcMutEZY
https://openreview.net/pdf?id=qeXcMutEZY
https://arxiv.org/abs/2411.12919
https://arxiv.org/abs/2411.12919
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• Deep Diffusion Probabilistic (Generative) Models are powerful tools for 
accelerated MRI reconstruction
✔ Exploit large training databases
✔ Decouples from the forward model

Motivation

Motivation

Song NeurIPS (2019), Kingma ICLR (2014), Goodfellow NeurIPS (2014)
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Motivation

Motivation

Training Dataset

Generative 
Model

training

• Generative models learn priors for MR images.
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Motivation

Motivation

Sample from Gaussian Distribution

Generative 
Model

• Generative models learn priors for MR images.
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Motivation

Motivation

Generative 
Model

Sample from Image Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution
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Motivation

Motivation

Generative 
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• Generative models learn priors for MR images.

Sample from Image DistributionSample from Gaussian Distribution
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Motivation

Motivation

Generative 
Model

 

Image Prior

 

• Generative models learn priors for MR images.

Sample from Gaussian Distribution Sample from Image Distribution
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• Generative Models to guide accelerated MRI reconstructions.
Motivation

Motivation

 
”High 
Probability 
Images”
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• Generative Models to guide accelerated MRI reconstructions.
Motivation
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Motivation

Motivation

Training Dataset Processed Dataset

• Generative Models rely on large amounts of  high-quality data.
• MRI data are inherently noisy1,2, multi-coil k-space.

1FastMRI (https://fastmri.med.nyu.edu/), 2Wang, MRM (2024)

https://fastmri.med.nyu.edu/
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Motivation

Motivation

 

Training Dataset Processed Dataset

• Generative Models rely on large amounts of  high-quality data.
• MRI data are inherently noisy1,2, multi-coil k-space.

1FastMRI (https://fastmri.med.nyu.edu/), 2Wang, MRM (2024)

https://fastmri.med.nyu.edu/
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Motivation

Motivation

Generative 
Model

• Training generative models with noisy datasets leads to a poor 
prior.

• Reconstruction performance depends on accuracy of priors
Training Dataset

training
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Motivation

Motivation

Generative 
Model

Sample from Image Distribution

• Training generative models with noisy datasets leads to a poor 
prior.

• Reconstruction performance depends on accuracy of priors
Training Dataset

training



19Abstract # 6069Abstract # 6069

Purpose

Motivation

Training Dataset

• Learn model to denoise dataset before training generative 
models

Denoised Training Dataset

Generative 
Model

training

Learned
Denoiser
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Purpose

Motivation

Training a denoiser without access clean training samples.

Investigate the effectiveness of self-supervised denoising 
as a pre-processing step to learning generative priors for 

accelerated MRI reconstruction
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Problem Formulation

Problem Formulation
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Problem Formulation

Problem Formulation

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data
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Original K-Space
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Original K-Space Coil Images

Problem Formulation

Problem Formulation

 

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data
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Original K-Space Coil Images Noisy MRI Sample

Problem Formulation

Problem Formulation

 

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data
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Proposed Methods

Proposed Methods
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Proposed Methods

 

 

 

 

 

 

 

Step 1

Proposed Methods
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Self-Supervised Denoising
Training a denoiser with only access to noisy data

 

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023

Proposed Methods - Denoising
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Generalized SURE (GSURE) Basics

1Eldar, IEEE Transactions on Signal Processing, 2008

Proposed Methods - Denoising
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Pre-Processing Noisy Dataset

 

Proposed Methods - Denoising

Kellman MRM (2005)
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Pre-Processing Noisy Dataset

Proposed Methods - Denoising

Kellman MRM (2005)
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GSURE Denoising - Summary

 

  

  

 

GSURE Training

Proposed Methods - Denoising
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Proposed Methods

 

 

 

 

 

 

 

Step 1

Proposed Methods

Step 2
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Diffusion Probabilistic (Generative) Model Details

1Karras, Neurips 2022  2Song, UAI, 2018 3Vincent, MIT Press 2011 4Song, NeurIPS 2019 5Dhariwal, NeurIPS 2021 6Chung, ICLR 2023

Proposed Methods – Generative Modeling

• Elucidating the Design Space of Diffusion-Based Generative Models 
(EDM)1

• Posterior sampling (MRI reconstruction) with Diffusion Posterior 
Sampling6
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. 

GSURE Denoised data
3. Accelerated MRI Reconstruction performance of score models 

trained on Noisy vs. GSURE Denoised data

Experiments

Evaluation
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. 

GSURE Denoised data
3. Posterior Reconstruction performance of score models trained 

on Noisy vs. GSURE Denoised data

Experiments

Evaluation

Experimental Details:
• Brain:

- 10,000 2D T2-weighted brain samples
• Knee:

- 2,000 2D fat-suppressed knee

• Learned Denoiser Architecture: EDM (Karras NeurIPS 2022)
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Denoising Performance

Evaluation - Denoising
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Denoising Performance

Evaluation - Denoising
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. 

GSURE Denoised data
3. Posterior Reconstruction performance of score models trained 

on Noisy vs. GSURE Denoised data

Results

Evaluation

Experimental Details:
• EDM Model Trained with on noisy and denoised versions of the 10,000 sample T2 

Brain dataset.

• EDM Architecture: EDM (Song Karras 2022)
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1. Evaluation of Self-Supervised Denoising (GSURE)
2. Prior sampling performance of score models trained on Noisy vs. 

GSURE Denoised data
3. Accelerated MRI Reconstruction performance of score models 

trained on Noisy vs. GSURE Denoised data

Results

Evaluation

Experimental Details
• 100 retrospectively under-sampled 2D T2 Brain validation samples
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Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)

Evaluation – Posterior Sampling
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Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)

Evaluation – Posterior Sampling
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Accelerated MRI Reconstruction with Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)
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Accelerated MRI Reconstruction with Posterior Sampling 𝑥 ~ 𝑝(𝑥|𝑦)
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Discussion and Conclusion

1. GSURE Denoising as a pre-processing step helps train more accurate priors 
which are better inverse problem solvers than naïve training.

2. The benefit of denoising is more visible in lower SNR settings

3. Important to investigate tradeoff between noise and distortion

4. Applicable to other learning settings (e.g. end-to-end methods)

Conclusion
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Future Works

 

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023, 4Aali, AmbientDPS, Arxiv, 2024

Future Works
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Future Works

 

A is a Linear Forward Operator (Fully-Sampled) -> GSURE1,2,3

Assume A is a Low-Rank Forward Operator4

 

1Soltanayev, NeurIPS, 2018, 2Eldar, IEEE Transactions on Signal Processing, 2008, 3Kawar, TMLR, 2023, 4Aali, AmbientDPS, ICLR, 2025Future Works
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2. Optimizing LLM 
performance in 
clinical 
documentation tasks



T E X A S E N G I N E E R I N G 

Motivation
1. Health Care providers at One Medical need to manually look through hundreds of clinical 

documents

2. Surfacing the most relevant clinical data can be accomplished with text summarization

3. This can allow for better health outcomes as it helps providers:
a. Save valuable time
b. Build a deeper connection with patients

Published in JAMIA

https://academic.oup.com/jamia/advance-article-abstract/doi/10.1093/jamia/ocae312/7934937


T E X A S E N G I N E E R I N G MIMIC-IV-BHC - Sample



T E X A S E N G I N E E R I N G MIMIC-IV-BHC - Sample



T E X A S E N G I N E E R I N G 

1. A curated collection of preprocessed and labeled clinical notes derived from the MIMIC-IV-Note 
database. 

2. To facilitate development and training of machine learning models focused on summarizing brief 
hospital courses (BHC)

3. 270,033 meticulously cleaned and standardized clinical notes containing an average token length 
of 2,267

4. Preprocessing pipeline employed uses regular expressions to address common issues in the raw 
clinical text

Published on PhysioNet

https://doi.org/10.13026/fh2q-4148


T E X A S E N G I N E E R I N G 

Pipeline
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Pipeline



T E X A S E N G I N E E R I N G Overview of Adaptation Methods
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T E X A S E N G I N E E R I N G 



T E X A S E N G I N E E R I N G 



T E X A S E N G I N E E R I N G Context Length Analysis
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T E X A S E N G I N E E R I N G 



T E X A S E N G I N E E R I N G 



T E X A S E N G I N E E R I N G 

Summarization Example
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T E X A S E N G I N E E R I N G 

Summarization Example



1. Adapted open-source models can match the quality of clinician-written summaries

2. Adapted proprietary models can outperform the quality of clinician-written summaries

3. Adapted LLMs for summarization have the potential to:
a. streamline documentation
b. reduce errors
c. enhance clinical workflows
d. improve patient safety

T E X A S E N G I N E E R I N G 

Conclusions
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3. Detecting 
underdiagnosed 
medical conditions 
via opportunistic 
imaging



T E X A S E N G I N E E R I N G 

Motivation
1. Abdominal computed tomography (CT) scans are frequently performed in clinical settings.

2. Opportunistic CT involves repurposing routine CT images to extract diagnostic information

3. This study utilizes deep learning methods to promote accurate diagnosis and clinical 
documentation.

4. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes and 
corresponding documentation in radiology reports and ICD coding.

Available on ArXiv

https://arxiv.org/pdf/2409.11686
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Pipeline
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Pipeline
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Sarcopenia
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Hepatic Steatosis



T E X A S E N G I N E E R I N G 

Overlap in Steatosis Detection
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Overlap in Steatosis Detection



1. We demonstrate the potential of deep learning-based opportunistic CT in improving the 
detection and coding of medical conditions.

2. Found substantial discrepancies b/w condition prevalence and coding:
a. Sarcopenia: Out of scans diagnosed through opportunistic imaging, only 0.5% scans were 

ICD-coded
b. Hepatic Steatosis: Out of scans diagnosed through opportunistic imaging or radiology 

reports, only 3.2% scans were ICD-coded
c. Ascites: Out of scans diagnosed with ascites through opportunistic imaging or radiology 

reports, only 30.7% scans were ICD-coded

T E X A S E N G I N E E R I N G 

Conclusions
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