Advancing Healthcare with Machine Learning

Research Talk, HOPPR.AI 14 Feb 2025

Asad Aali Research Scientist Stanford University asadaali@stanford.edu

About Me

- Research Scientist at Stanford University
 - Lab: Machine Intelligence for Medical Imaging (MIMI)
 - Advisor: Akshay Chaudhari
- Passionate about developing machine learning algorithms for healthcare applications
- Research Interests:
 - Machine Learning
 - Foundation Models
 - Healthcare

Plan for Today

Solving medical imaging inverse problems by learning from corrupted data

2 Optimizing LLM performance in clinical documentation tasks

3

Detecting underdiagnosed medical conditions via opportunistic imaging

Stanford University

Stanford University

Relevant Publications:

- 1. <u>Solving inverse problems with generative priors learned from noisy data</u> a. Poster presentation, IEEE Asilomar 2023
- 2. <u>GSURE Denoising enables training of higher quality generative priors for</u> accelerated Multi-Coil MRI Reconstruction
 - a. Oral presentation, ISMRM 2024
- 3. Ambient Diffusion Posterior Sampling: Solving Inverse Problems with **Diffusion Models Trained on Corrupted Data**
 - Poster presentation, ICLR 2024 а.
- 4. Enhancing Deep Learning-Driven Multi-Coil MRI Reconstruction via Self-Supervised Denoising
 - Currently in review а.

- Deep Diffusion Probabilistic (Generative) Models are powerful tools for accelerated MRI reconstruction
 - Exploit large training databases
 - Decouples from the forward model

• Generative models learn priors for MR images.

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

• Generative models learn priors for MR images.

Sample from Gaussian Distribution

• Generative Models to guide accelerated MRI reconstructions.

• Generative Models to guide accelerated MRI reconstructions.

• Generative Models to guide accelerated MRI reconstructions.

- Generative Models rely on large amounts of *high-quality data*.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

- Generative Models rely on large amounts of <u>high-quality data</u>.
- MRI data are *inherently noisy*^{1,2}, multi-coil k-space.

- Training generative models with noisy datasets leads to a poor prior.
- Reconstruction performance depends on accuracy of priors

Training Dataset

- Training generative models with noisy datasets leads to a poor prior.
- Reconstruction performance depends on accuracy of priors

Training Dataset

Purpose

• Learn model to denoise dataset before training generative models

Denoised Training Dataset

Training a denoiser without access clean training samples.

Investigate the effectiveness of self-supervised denoising as a pre-processing step to learning generative priors for accelerated MRI reconstruction

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data

y = FSx + noise

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data

y = FSx + noise

Original K-Space

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data

Goal: learn the clean distribution using fully sampled, noisy multi-coil MRI data

 \hat{x}_{noisy}

Self-Supervised Denoising

Training a denoiser with only access to noisy data

A is a Linear Forward Operator (Fully-Sampled) -> GSURE^{1,2,3}

y = FSx + noise

¹Soltanayev, NeurIPS, 2018, ²Eldar, IEEE Transactions on Signal Processing, 2008, ³Kawar, TMLR, 2023

Generalized SURE (GSURE) Basics

- GSURE¹: Self-supervised denoising technique, only need access to:
 - $\hat{x}_{noisy} \rightarrow Noisy Samples$
 - Noise Covariance Matrix
- An unbiased estimate of the MSE

$$E[\mathcal{L}_{GSURE}] = E \| g_{\phi}(\hat{x}_{noisy}) - x \|$$

Pre-Processing Noisy Dataset

- GSURE loss requires the **noise covariance** matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Pre-Processing Noisy Dataset

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Original K-Space

Pre-Processing Noisy Dataset

- GSURE loss requires the noise covariance matrix
- Pre-whitening (noise covariance = I) makes computation relatively straight-forward

Pre-Processing Noisy Dataset

- GSURE loss requires the noise covariance matrix
- Pre-whitening (noise covariance = I) makes computation relatively straight-forward

Pre-Processing Noisy Dataset

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

Pre-Processing Noisy Dataset

- GSURE loss requires the noise covariance matrix
- **Pre-whitening** (noise covariance = *I*) makes computation relatively straight-forward

GSURE Denoising - Summary

Proposed Methods

Diffusion Probabilistic (Generative) Model Details

 Elucidating the Design Space of Diffusion-Based Generative Models (EDM)¹

 Posterior sampling (MRI reconstruction) with Diffusion Posterior Sampling⁶

¹Karras, Neurips 2022 ²Song, UAI, 2018 ³Vincent, MIT Press 2011 ⁴Song, NeurIPS 2019 ⁵Dhariwal, NeurIPS 2021 ⁶Chung, ICLR 2023

Experiments

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data
- 3. Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Experiments

1. Evaluation of **Self-Supervised Denoising** (GSURE)

Experimental Details:

- Brain:
 - 10,000 2D T₂-weighted brain samples
- Knee:
 - 2,000 2D fat-suppressed knee
- Learned Denoiser Architecture: EDM (Karras NeurIPS 2022)

Denoising Performance

Denoising Performance

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data
- 3. Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

1. Evaluation of **Self-Supervised Denoising** (GSURE)

 Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data

2 Postarior Reconstruction performance of score models trained

Experimental Details:

- EDM Model Trained with on noisy and denoised versions of the 10,000 sample T₂ Brain dataset.
- EDM Architecture: EDM (Song Karras 2022)

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- 2. Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data
- Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

- 1. Evaluation of **Self-Supervised Denoising** (GSURE)
- Prior sampling performance of score models trained on Noisy vs. GSURE Denoised data
- Accelerated MRI Reconstruction performance of score models trained on Noisy vs. GSURE Denoised data

Experimental Details

• 100 retrospectively under-sampled 2D T₂ Brain validation samples

Accelerated MRI Reconstruction with Posterior Sampling $x \sim p(x|y)$

Accelerated MRI Reconstruction with Posterior Sampling $x \sim p(x|y)$

Discussion and Conclusion

- 1. GSURE Denoising as a pre-processing step helps train more **accurate priors** which are better **inverse problem solvers** than naïve training.
- 2. The benefit of denoising is more visible in **lower SNR** settings
- 3. Important to investigate tradeoff between noise and distortion
- 4. Applicable to other learning settings (e.g. end-to-end methods)

Future Works

A is a Linear Forward Operator (**Fully-Sampled**) -> GSURE^{1,2,3}

$$y = FSx + noise$$

¹Soltanayev, NeurIPS, 2018, ²Eldar, IEEE Transactions on Signal Processing, 2008, ³Kawar, TMLR, 2023, ⁴Aali, AmbientDPS, Arxiv, 2024

Future Works

A is a Linear Forward Operator (Fully-Sampled) -> GSURE^{1,2,3}

$$y = FSx + noise$$

Assume A is a **Low-Rank** Forward Operator⁴

$$y = \mathbf{P}FSx + noise$$

Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data

Asad Aali, Giannis Daras, Brett Levac, Sidharth Kumar, Alex Dimakis, Jon Tamir

🚞 Published: 22 Jan 2025, Last Modified: 11 Feb 2025 🛛 TICLR 2025 Poster 💿 Everyone 📑 Revisions 📕 BibTeX 💿 CC BY 4.0

Motivation

- 1. Health Care providers at One Medical need to manually look through hundreds of clinical documents
- 2. Surfacing the most relevant clinical data can be accomplished with text summarization
- 3. This can allow for better **health outcomes** as it helps providers:
 - a. Save valuable time
 - b. Build a deeper connection with patients

Issues More Content 🔻 Submit 💌 Purchase Alerts About 💌

Journal of the American M 🔻

JOURNAL ARTICLE

A dataset and benchmark for hospital course summarization with adapted large language models

Get access >

Asad Aali, MS ⊠, Dave Van Veen, PhD, Yamin Ishraq Arefeen, PhD, Jason Hom, MD, Christian Bluethgen, MS, MD, Eduardo Pontes Reis, MD, Sergios Gatidis, MD, Namuun Clifford, MSN, FNP, Joseph Daws, PhD, Arash S Tehrani, PhD ... Show more

Journal of the American Medical Informatics Association, ocae312, https://doi.org/10.1093/jamia/ocae312 Published: 30 December 2024 Article history ▼ Published in JAMIA

MIMIC-IV-BHC - Sample

Table 1. a) A sample of our novel pre-processed clinical notes dataset, extracted from raw MIMIC-IV notes.

Input	Example
SEX	F
SERVICE	SURGERY
ALLERGIES	No Known Allergies
CHIEF COMPLAINT	Splenic laceration
MAJOR PROCEDURE	NONE
HISTORY OF PRESENT ILLNESS	s/p routine colonoscopy this morning with polypectomy (report not available)
PAST MEDICAL HISTORY	Mild asthma, hypothyroid
FAMILY HISTORY	Non-contributory
PHYSICAL EXAM	Gen: Awake and alert CV: RRR Lungs: CTAB Abd: Soft, nontender, nondistended
PERTINENT RESULTS	03:45 PM BLOOD WBC-5.5 RBC-3.95 Hgb-14.1
MEDICATIONS ON ADMISSION	1. Levothyroxine Sodium 100 mcg PO DAILY 2. Flovent HFA (fluticasone)
DISCHARGE DISPOSITION	Home
DISCHARGE DIAGNOSIS	Splenic laceration
DISCHARGE CONDITION	Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive
DISCHARGE INSTRUCTIONS	You were admitted to in the intensive care unit for monitoring after a

MIMIC-IV-BHC - Sample

Table 1. a) A sample of our novel pre-processed clinical notes dataset, extracted from raw MIMIC-IV notes.

Input	Example
SEX	F
SERVICE	SURGERY
ALLERGIES	No Known Allergies
CHIEF COMPLAINT	Splenic laceration
MAJOR PROCEDURE	NONE
HISTORY OF PRESENT ILLNESS	s/p routine colonoscopy this morning with polypectomy (report not available)
PAST MEDICAL HISTORY	Mild asthma, hypothyroid
FAMILY HISTORY	Non-contributory
PHYSICAL EXAM	Gen: Awake and alert CV: RRR Lungs: CTAB Abd: Soft, nontender, nondistended
PERTINENT RESULTS	03:45 PM BLOOD WBC-5.5 RBC-3.95 Hgb-14.1
MEDICATIONS ON ADMISSION	1. Levothyroxine Sodium 100 mcg PO DAILY 2. Flovent HFA (fluticasone)
DISCHARGE DISPOSITION	Home
DISCHARGE DIAGNOSIS	Splenic laceration
DISCHARGE CONDITION	Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive
DISCHARGE INSTRUCTIONS	You were admitted to in the intensive care unit for monitoring after a

Output	Example				
BRIEF HOSPITAL COURSE	Ms was admitted to on After getting a colonoscopy and polypectomy, she				

MIMIC-IV-Ext-BHC: Labeled Clinical Notes Dataset for Hospital Course Summarization

Asad Aali (), Dave Van Veen (), Yamin Arefeen (), Jason Hom (), Christian Bluethgen (), Eduardo Pontes Reis (), Sergios Gatidis (), Namuun Clifford (), Joseph Daws (), Arash Tehrani (), Jangwon Kim (), Akshay Chaudhari ()

- 1. A curated collection of preprocessed and labeled clinical notes derived from the MIMIC-IV-Note database.
- 2. To facilitate development and training of machine learning models focused on summarizing brief hospital courses (BHC)
- 3. 270,033 meticulously cleaned and standardized clinical notes containing an average token length of 2,267
- 4. Preprocessing pipeline employed uses regular expressions to address common issues in the raw clinical text

Published on PhysioNet

Models	Clinical-T5-Large	Llama2-13B	FLAN-UL2	GPT-3.5	GPT-4
Pre-Training Data	MIMIC-III, MIMIC-IV	2 Trillion Publicly Available Tokens	C4 Corpus	Common Crawl and other Public Sources	Unknown
Architecture	Sequence-to-Sequence	Autoregressive	Sequence-to-Sequence	Autoregressive	Autoregressive
Parameters	0.75 Billion	13 Billion 20 Billion		175 Billion	Unknown
Context Length	512 Tokens	4,096 Tokens	2,048 Tokens	16,384 Tokens	32,768* Tokens
	Open-Source			← Prc	• • • • • • • • • • • • • • • • • • •

Models Pre-Training	Clinical-T5-Large	Llama2-13B	FLAN-UL2		GPT-3.5		GPT-4		
Data	MIMIC-III, MIMIC-IV	Available Tokens	C4 Corpus		Public Sources		Unknown		
Architecture	Sequence-to-Sequence	Autoregressive	Sequence-to-Sequence		Autoregressive		Autoregressive		
Parameters	0.75 Billion	13 Billion	20 Billion		175 Billion		Unknown		
Context Length	512 Tokens	4,096 Tokens	2,048 Tokens		16,384 Tokens		32,768* Tokens		
Open-Source Proprietary increasing domain adaptation via adaptation strategy									
Adaptation Strategies Examples	Null Zero-Shot Clinical Note: Brief Hospital Course:	Prefix Zero-Sho Summarize the following cl Clinical Note: Brief Hospital Course:	ot linical note: Clinica Brief H	In-Context One-Shot Clinical Note: [example] Brief Hospital Course: [example] Clinical Note: Brief Hospital Course:		QLORA [tune model with context examples] Clinical Note: Brief Hospital Course:			
¥	Discrete Prompting – no gradient updates					0	Gradient-Based Tuning		

Models Pre-Training Data Architecture Parameters Context Length	Clinical-T5-Large MIMIC-III, MIMIC-IV Sequence-to-Sequence 0.75 Billion 512 Tokens	Llama2-13B 2 Trillion Publicly Available Tokens Autoregressive 13 Billion 4,096 Tokens	FLAN-UL2 C4 Corpus Sequence-to-Sequence 20 Billion 2,048 Tokens	GPT-3.5 Common Crawl and other Public Sources Autoregressive 175 Billion 16,384 Tokens	GPT-4 Unknown Autoregressive Unknown 32,768' Tokens			
Ļ	Open-Source Proprietary increasing domain adaptation via adaptation strategy							
Adaptation Strategies Examples	Null Zero-Shot Clinical Note: Brief Hospital Course:	Prefi Zero-S Summarize the followin Clinical Note: Brief Hospital Course:	ix In- hot O Clinical Note: [e Brief Hospital Co Clinical Note: Brief Hospital Co	-Context ne-Shot xample] pourse: [example] pourse:	QLORA [tune model with context examples] Clinical Note: Brief Hospital Course:			
\	Discrete Prompting – no gradient updates Gradient-Based Tuning							
Quantitative Evaluation	BLEU		ROUGE-L		BERT-Score			
Metrics	Syntactic: Degree of O	verlap	yntactic: Longest Common Subsequer	nce Sema	antic: BERT Embeddings			
+								

,									
Models	Clinical-T5-Large	T5-Large Llama2-13B		UL2	GPT-3.5		GPT-4		
Pre-Training Data	MIMIC-III, MIMIC-IV	2 Trillion Publicly Available Tokens	2 Trillion Publicly Available Tokens C4 Corpus C0 Common Crawl and Public Sources		Common Crawl and ot Public Sources	her:	Unknown		
Architecture	Sequence-to-Sequence	Autoregressive	Sequence-to-	Sequence	Autoregressive		Autoregressive		
Parameters	0.75 Billion	13 Billion	20 Billion 175 Billion		175 Billion		Unknown		
Context Length	512 Tokens	4,096 Tokens	2,048 To	kens	16,384 Tokens		32,768* Tokens		
	Open-Source Proprietary increasing domain adaptation via adaptation strategy								
Adaptation Strategies	Null Prefix In-Context Zero-Shot Zero-Shot One-Shot				ntext Shot	QLoRA			
Examples	Clinical Note: Brief Hospital Course:	Summarize the following Clinical Note: Brief Hospital Course:	clinical note:] example]	[tune Clinica Brief H	model with context examples] al Note: Hospital Course:			
¥	Discrete Prompting – no gradient updates Gradient-Based Tuning								
Quantitative	BLEU		ROUG	E-L		BEF	RT-Score		
Evaluation Metrics	Syntactic: Degree of Ove	actic: Longest Common Subsequence			Semantic: BERT Embeddings				
Clinical	Comprehensiveness	Concisen	ess	Correc	tness		Fluency		
Study Does the summary	capture important information?	exclude non-ir informatio	nportant n?	achieve factual correctness?			exhibit fluency?		

Overview of Adaptation Methods

Overview of Adaptation Methods

Context Length Analysis

Context Length Analysis

b) Out-of-Distribution Context Length Analysis

Expertise	You are an expert medical professional				
Instruction	Summarize the clinical note into a brief hospital course				

Expertise	You are an expert medical professional
Instruction	Summarize the clinical note into a brief hospital course
In-Context Example	Use the examples to guide word choice input: {example clinical note} summary: {example bhc}

Expertise	You are an expert medical professional
Instruction	Summarize the clinical note into a brief hospital course
In-Context Example	Use the examples to guide word choice input: {example clinical note} summary: {example bhc}
Clinical Note Input	SSX: F SRVICE: 085TERICS/GYNECOLOGY ALTEREDIS::::::::::::::::::::::::::::::::::::

Expertise	You are an expert medical professional
Instruction	Summarize the clinical note into a brief hospital course
In-Context Example	Use the examples to guide word choice input: {example clinical note} summary: {example bhc}
Clinical Note Input	SEX: F SEX: EC: 0BSTETRICS/GYNECOLOGY ALLERGES: No Known Allergies / Adverse Drug Reactions ATTENDING:
Summary 1 Clinician	Pt was Rh positive and admitted for vaginal bleeding. She had negative cultures (GBS and yeast, GC/CT/trich). She had spotting from admission until She was monitored until She was discharged home in a stable continue without any evidence of vaginal bleeding or spotting.
Summary 2 GPT-4	Ms was admitted under the care of Dr due to vaginal bleeding during her pregnancy. She has a history of abnormal pap smears, anxiety, depression, and fibroadenoma of the breast. No surgical procedures were performed during her stay. Her condition was monitored and managed with prenatal vitamins and Citalopram for her anxiety. She was discharged in a clear and coherent mental state, able to move independently. She was instructed to continue pelvic rest and avoid heavy lifting or strenuous activity. She will continue her care at home.

Expertise	You are an expert medical professional
Instruction	Summarize the clinical note into a brief hospital course
In-Context Example	Use the examples to guide word choice input: {example clinical note} summary: {example bhc}
Clinical Note Input	SEX: F SEX: B
Summary 1 Clinician	Pt was Rh positive and admitted for vaginal bleeding. She had negative cultures (GBS and yeast, GC/CT/trich). She had spotting from admission until She was monitored until She was discharged home in a stable continue without any evidence of vaginal bleeding or spotting.
Summary 2 GPT-4	Ms was admitted under the care of Dr due to vaginal bleeding during her pregnancy. She has a history of abnormal pap smears, anxiety, depression, and fibroadenoma of the breast. No surgical procedures were performed during her stay. Her condition was monitored and managed with prenatal vitamins and Citalopram for her anxiety. She was discharged in a clear and coherent mental state, able to move independently. She was instructed to continue pelvic rest and avoid heavy lifting or strenuous activity. She will continue her care at home.
Reader Feedback	Summary A (Clinician) contains multiple factual mistakes (serial ultrasounds, no evidence of vaginal bleeding, closed cervix, negative culture). It seems to contain information not at all present in the actual clinical note. Summary B (GPT-4) failed to mention a summary of the patients labs or vital signs, but otherwise looks great.

Conclusions

- 1. Adapted **open-source models can match** the quality of clinician-written summaries
- 2. Adapted **proprietary models can outperform** the quality of clinician-written summaries
- 3. Adapted LLMs for summarization have the potential to:
 - a. streamline documentation
 - b. reduce errors
 - c. enhance clinical workflows
 - d. improve patient safety

Label Extraction

Deep Learning-based

Feature and

Opportunistic C pine, Muscle, and **Adipose Tissue**

Contrast Phase Detection

3. Detecting underdiagnosed medical conditions via opportunistic imaging

Motivation

- 1. Abdominal computed tomography (CT) scans are frequently performed in clinical settings.
- 2. Opportunistic CT involves **repurposing routine CT** images to extract diagnostic information
- 3. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation.
- 4. We analyze **2,674 inpatient CT scans** to identify discrepancies between **imaging phenotypes** and corresponding documentation in **radiology reports** and **ICD coding**.

Detecting Underdiagnosed Medical Conditions with Deep Learning-Based Opportunistic CT Imaging

Asad Aali, MS¹, Andrew Johnston, MD, MBA¹, Louis Blankemeier, MS¹, Dave Van Veen, PhD¹, Laura T Derry, MD, MBA¹, David Svec, MD, MBA¹, Jason Hom, MD^{1,*}, Robert D. Boutin, MD^{1,*}, Akshay S. Chaudhari, PhD^{1,*}

Available on ArXiv

¹Stanford University Stanford, CA, USA

Pipeline

Pipeline

Pipeline

Sarcopenia

Sarcopenia

Hepatic Steatosis

Spleen

Hepatic Steatosis

Overlap in Steatosis Detection

Table 2: Overlap in steatosis detection using: a) Liver HU, b) Liver-Spleen HU, c) Radiology Reports, d) ICD coding.

Liver ≤ 90 HU	Liver-Spleen ≤ -19 HU	Radiology Report	ICD-Coding	Count	%
Yes	Yes	Yes	Yes No	5 58	0.2% 2.5%
		No	Yes No	1 68	0.0% 3.0%
Yes	No	Yes	Yes No	1 16	0.0% 0.7%
		No	Yes No	0 85	0.0% 3.7%
No	Yes	Yes	Yes No	2 33	0.1% 1.5%
		No	Yes No	6 211	0.3% 9.3%
No	No	Yes	Yes No	2 52	0.1% 2.3%
		No	Yes No	11 1,724	0.5% 75.8%
Total				2,275	100.0%

Overlap in Steatosis Detection

Table 2: Overlap in steatosis detection using: a) Liver HU, b) Liver-Spleen HU, c) Radiology Reports, d) ICD coding.

Liver ≤ 90 HU	Liver-Spleen ≤ -19 HU	Radiology Report	ICD-Coding	Count	%
Yes	Yes	Yes	Yes No	5 58	0.2% 2.5%
		No	Yes No	1 68	0.0% 3.0%
Yes	No	Yes	Yes No	1 16	0.0% 0.7%
		No	Yes No	0 85	0.0% 3.7%
No	Yes	Yes	Yes No	2 33	0.1% 1.5%
		No	Yes No	6 211	0.3% 9.3%
No	No	Yes	Yes No	2 52	0.1% 2.3%
		No	Yes No	11 1,724	0.5% 75.8%
Total			2,275	100.0%	

Conclusions

- 1. We demonstrate the potential of deep learning-based **opportunistic CT** in **improving the detection and coding** of medical conditions.
- 2. Found substantial discrepancies b/w condition prevalence and coding:
 - a. Sarcopenia: Out of scans diagnosed through opportunistic imaging, only **0.5% scans were** ICD-coded
 - b. Hepatic Steatosis: Out of scans diagnosed through opportunistic imaging or radiology reports, only **3.2% scans were ICD-coded**
 - c. Ascites: Out of scans diagnosed with ascites through opportunistic imaging or radiology reports, only **30.7% scans were ICD-coded**

Thank You

Stanford University