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UT Computational Sensing and Imaging Lab

« Joint design of imaging system and software
» Particular focus on application to MRI
» Work with clinicians to translate work to hospital

Jon Tamir, PhD
Assistant Professor, ECE, UT Austin
http://www.jtsense.com/

https://qithub.com/utcsilab
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Deep learning inversion for MRI

1. End-to-end supervised training
2. Distribution learning / generative modeling
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https://www.aspectimaging.com 4
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Generative models are powerful image generators
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T Karras et al., CVPR 2020 Y Song et al., ICLR 2021 )
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Generative models are powerful image generators
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https://thiscatdoesnotexist.com/
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Generative models are powerful image generators

Generative model trained on FastMRI data 7



SIS _

MRI: Problem Formulation

Signal is the Fourier transform of the image
y = Ax + noise

k-space y
magnitude + phase magnitude + phase magnitude + phase




B2t _

Score-based generative models

X Score-based Vlog px(x) AV

(image) i
generative model —
sg(x)
. High density
Low dfen5|ty region
region
( h
Vlogpx(x) )

A Hyvarinen, JMLR 2005, Y Song et al., UAI 2018, Vincent et al., MIT Press 2011, Y Song et al., NeurlPS 2019. P Dhariwal et al,. NeurIPS 2021. 1 0
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MRI Samples are inherently noisy

Goal is to learn the clean distribution using noisy data (i.i.d Gaussian, with known power o2 ).

y = Ax + noise

Original K-Space 1



SIE _

MRI Samples are inherently noisy

Goal is to learn the clean distribution using noisy data (i.i.d Gaussian, with known power o2 ).

y = Ax + noise

Original K-Space Coil Images 12



SRaE _

MRI Samples are inherently noisy

Goal is to learn the clean distribution using noisy data (i.i.d Gaussian, with known power o2 ).

y = Ax + noise

Original K-Space Coil Images Cov(n) 13
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MRI Samples are inherently noisy

Goal is to learn the clean distribution using noisy data (i.i.d Gaussian, with known power o2 ).

y = Ax + noise

Original K-Space Coil Images Cov(n) Noisy MRI Sample 14



Denoising with GSURE

SNR,, = 36 dB

Original FastMRI

NRMSE: 0.057
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Learning Priors using Generative Models — p(x)

Naive Score
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Learning Priors using Generative Models — p(x)
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GSURE-Score
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Inverse Problems using Generative Models x ~ p(x|y)
Fully Sampled Naive Score GSURE-Score |

NRMSE: 0.348

Naive Score GSURE-Score
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Conclusions

1. Self-supervised techniques like GSURE can successfully remove noise

2. Denoising as a pre-processing step, severely improves the quality of
generative priors

3. Periors trained on denoised FastMRI are better inverse problem solvers than
naive training
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Thank you!

Asad Aali

asad.aali@utexas.edu

https://www.linkedin.com/in/asadaali/

https://asad-aali.github.io/

MS ECE Student
The University of Texas at Austin

22


mailto:asad.aali@utexas.edu
https://www.linkedin.com/in/asadaali/
https://asad-aali.github.io/

