

MIMO Channel Estimation using Score-Based Generative Models

Asad Aali, Marius Arvinte, Jon Tamir– asad.aali@utexas.edu

Electrical and Computer Engineering, University of Texas at Austin

Introduction

- □ Channel Estimation is a critical task in multiple-input multiple-output (MIMO) communications
- □ Recovering accurate, high-dimensional channel state information (CSI) using reduced pilot (P) overhead has become a major open research problem
- □ Estimating accurate CSI with data-driven methods is important for future communication systems that integrate AI in physical layer processing

Goal Develop robust, data-driven, deep

Wireless System Theory

 \Box MIMO forward model: $\mathbf{Y} = \mathbf{HP} + \mathbf{N}$.

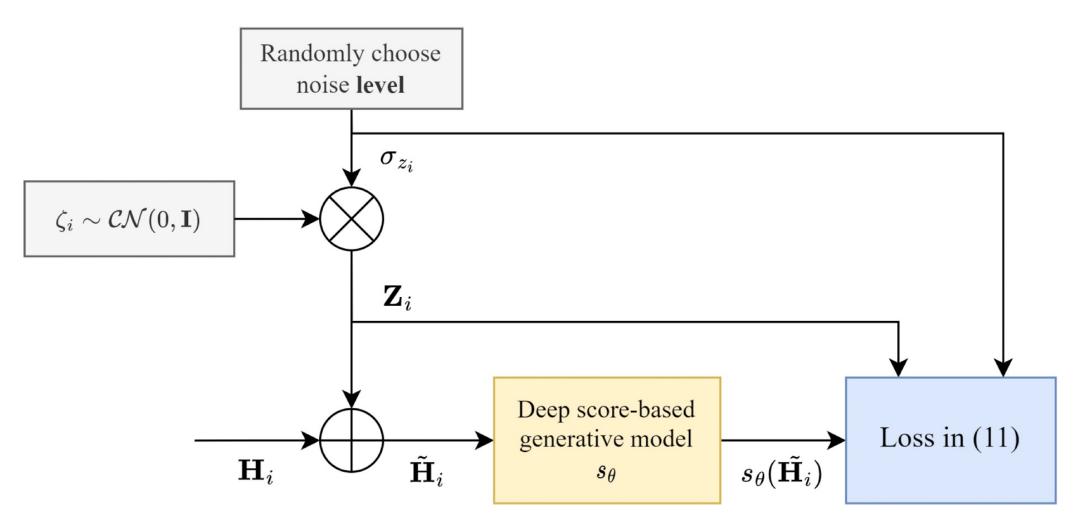
 $\mathbf{H} \in \mathbb{C}^{N_{\mathrm{r}} \times N_{\mathrm{t}}}$

 $\mathbf{p}_i \in \mathbb{C}^{N_{\mathrm{t}}}$

 $\sigma_{\text{pilot}}^2 \mathbf{I}$

- Channel state information matrix Pilot symbol
- Complex Additive White Gaussian Noise
- □ A narrowband, point-to-point MIMO communication scenario between a transmitter and receiver
- □ Channel estimation requires estimating the channel state information matrix H, using the received pilot matrix Y, while having knowledge of the transmitted pilot matrix P

Score Model Training



- □ A database of known channels is used to train a score-based generative model in an unsupervised manner
- □ A denoising score-matching framework learns the score (the gradient of log-

learning-based MIMO channel estimation algorithms for high-dimensional communication scenarios

CDL-D channel distribution p(H)

prior distribution)

 $\mathcal{L}_{ ext{score}}(heta) = \mathbb{E}_{\mathbf{H}_i \sim p_H, \mathbf{Z}_j \sim p_{Z_j}} \left| \sigma_{z_j}^2 \left\| s_{ heta}(\mathbf{H}_i + \mathbf{Z}_j) + rac{\mathbf{Z}_j}{\sigma_{z_j}^2} \right\|_2^2 \right|.$

	Proposed Method			
sample from prior H ~ p(H) <u>Score Models for channel reconstruction</u> – sample from posterior H ~ p(H Y)				
<u>بر</u>	Step 0	Step 2311	Use the learned score-based model in conjunction with the received pilots to iteratively update the channel estimate and perform posterior sampling	
ζ_t .			$\frac{\text{Posterior Sampling Update}}{\text{ID}} \qquad $	
ole. ess.			$\mathbf{H} \leftarrow \mathbf{H} + \alpha \cdot \psi_{H Y}(\mathbf{H} \mathbf{Y}) + \beta \cdot \zeta,$	
L-			Using Bayes Rule for $p(H Y) \xrightarrow{p_Y _H(Y H) \cdot p_H(H)} \xrightarrow{p_Y(Y)} s_\theta \xrightarrow{s_\theta} s_\theta$	
/			$\log p_{H Y}(\mathbf{H} \mathbf{Y}) = \log p_{Y H}(\mathbf{Y} \mathbf{H}) + \log p_{H}(\mathbf{H}) - \log p_{Y}(\mathbf{Y}).$ Taking Gradient on both sides $\xrightarrow{\partial \log p_{Y H}}{\partial H} \cdots$	
			$\mathbf{H} \leftarrow \mathbf{H} + \alpha \cdot \psi_{Y H}(\mathbf{Y} \mathbf{H}) + \alpha \cdot \psi_{H}(\mathbf{H}) + \beta \cdot \zeta.$ $\nabla \log p_{Y H}(\mathbf{Y} \mathbf{H}_{est,i}) = \frac{(\mathbf{H}_{est,i}\mathbf{P} - \mathbf{Y})\mathbf{P}^{\mathrm{H}}}{\sigma_{\mathrm{pilot}}^{2} + 2\beta \cdot \alpha_{i} \cdot \sigma_{z_{i}}^{2}},$ \mathbf{Y}, \mathbf{P} \mathbf{Y}, \mathbf{P} \mathbf{Y}, \mathbf{P}	
			$\mathbf{H}_{\text{est},i+1} = \mathbf{H}_{\text{est},i} + \alpha_i \cdot (\nabla \log p_{Y H}(\mathbf{Y} \mathbf{H}_{\text{est},i}) + \nabla \log p_H(\mathbf{H}_{\text{est},i})) + \sqrt{2\beta \cdot \alpha_i} \cdot \sigma_{z_i} \cdot \zeta,$	

Score Models for channel generation – sa

Annealed Langevin Dynamics

 $\mathbf{H}_{t+1} \leftarrow \mathbf{H}_t + \alpha_t \cdot \nabla \log p_H(\mathbf{H}_t) + \beta_t \cdot \zeta_t$ • $\alpha_t \cdot \psi_H(\mathbf{H}_t)$ increases the likelihood of the current sample. • $\beta_t \cdot \zeta_t$ represents a perturbation to the above process.

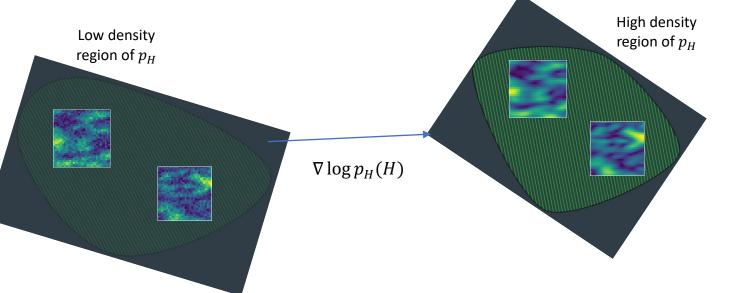
Let p_H denote the distribution of MIMO (CDL-D) channels for a stochastic environment. The score of p_H at H is defined as:

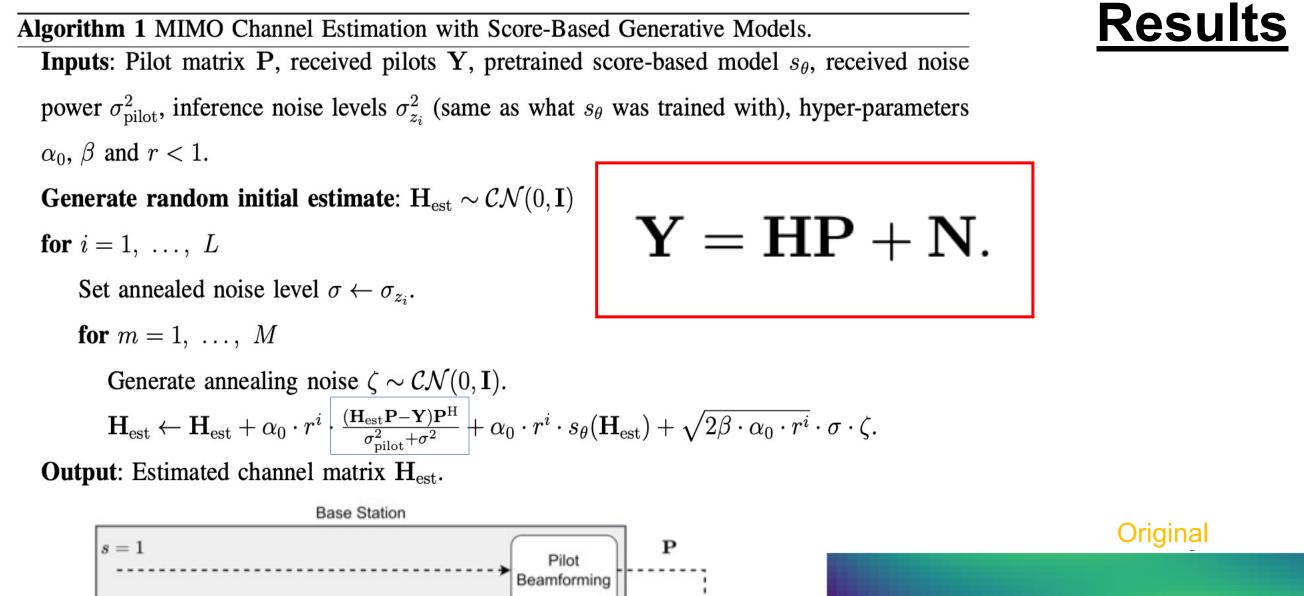
 $\psi_H(\mathbf{H}) = \nabla \log p_H(\mathbf{H}),$

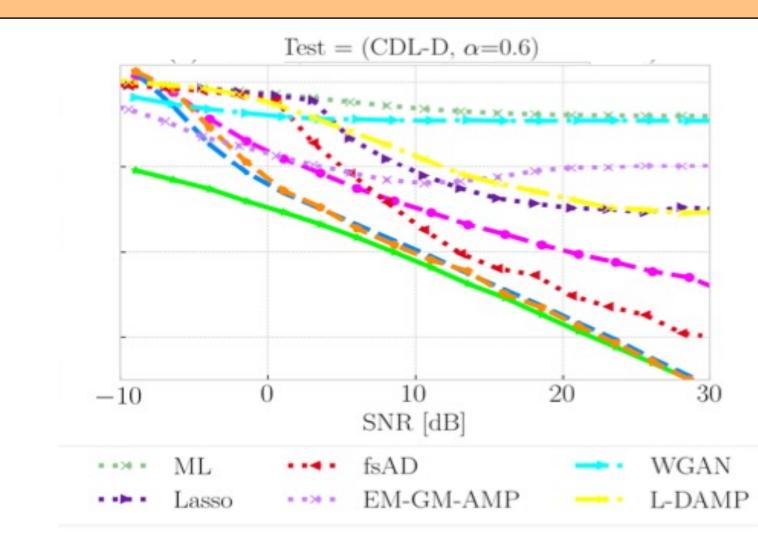
 \rightarrow

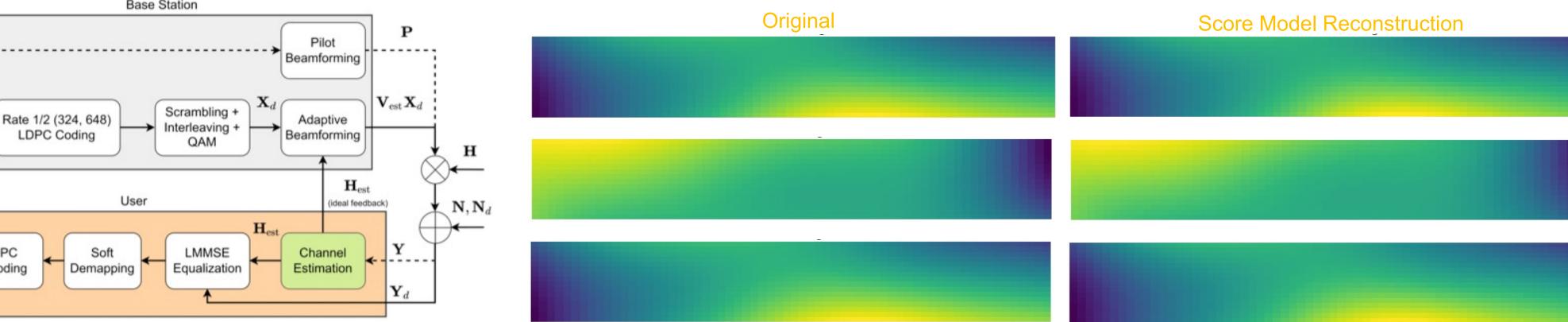
LDPC

Decoding









Discussion and Conclusion

- □ Introduced an unsupervised, probabilistic approach for MIMO channel estimation using a reduced number of pilot symbols
- Our results on simulated channels show that performance is favorable in-distribution, as well as in out-of-distribution settings

Next Steps:

- 1. Generic score-model training/inference code
- 2. Learning score models from noisy data
- 3. Accelerating inference with score models
- 4. Training and testing score models with real measurements
- 5. Score models beyond 2D channels

References

- Arvinte, M., & Tamir, J. I. (2022). MIMO Channel Estimation using Score-Based Generative.
- Y. Song and S. Ermon, Generative Modeling by Estimating Gradients of the Data Distribution.
- 3. Jalal, A, et al. Robust Compressed Sensing MRI with Deep Generative Priors.