MIMO Channel Estimation using
TEXAS Score-Based Generative Models

e Universityof Texas ataustin-—— Agad Aall, Marius Arvinte, Jon Tamir— asad.aali@utexas.edu
Electrical and Computer Engineering, University of Texas at Austin

Introduction Wireless System Theory Score Model Trainin
(J Channel Estimation is a critical task in J MIMO forward model: Y — HP _|_ N Randomly choose
multiple-input multiple-output (MIMO) noise level
communications H € CNexNe Channel state information matrix
02
N .
3 Recovering accurate, high-dimensional p: € C™ Pilot symbol . 569
channel state information (CSl) using 2 7 3 | | |
reduced pilot (P) overhead has become a O pilot Complex Additive White Gaussian Noise -
major open research problem Z l
0 Estimating accurate CSI with data-driven d A narrowband, point-to-point MIMO communication y A 4
| | u WI -Ariv : - - Deep score-based
methods is important for future scenario bet.wee.n a tran§m|tter énd .recelver )CD 3| generativemodel | 3| Lossin (11)
communication systems that integrate Al in d Channel estimation requires estimating the channel state H; H; 86 so(H;)
physical layer processing information matrix H, using the received pilot matrix Y, _ | ‘ |
while having knowledge of the transmitted pilot matrix P J A database of known channels is used to train a score-based generative model
Goal iINn an unsupervised manner
Develop robust, data-driven, deep 1 A denoising score-matching framework learns the score (the gradient of log-
learning-based MIMO channel estimation prior distribution) i -
algorithms for high-dimensional 2 Z,
: : : £score(0) — IEH,;NpH,ZijZ. O'zj 89(H7; -+ ZJ) + —
SOMTUMIZENTEN SEEnelies CDL-D channel distribution p(H) ’ I Ugj 2|
Proposed Method
Score Models for channel generation — sample from prior H ~ p(H) Score Models for channel reconstruction — sample from posterior H ~ p(H|Y)

1 Use the learned score-based model in conjunction with the received pilots to
iteratively update the channel estimate and perform posterior sampling
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Let py denote the distribution of MIMO (CDL-
D) channels for a stochastic environment.
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Algorithm 1 MIMO Channel Estimation with Score-Based Generative Models. Resu Its - e Dias0.0) Discussion and Concl usion

Inputs: Pilot matrix P, received pilots Y, pretrained score-based model sy, received noise

power o2, ., inference noise levels 05@_ (same as what sy was trained with), hyper-parameters

d Introduced an unsupervised, probabilistic approach for MIMO
channel estimation using a reduced number of pilot symbols

d Our results on simulated channels show that performance is
favorable in-distribution, as well as in out-of-distribution
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Learning score models from noisy data

Accelerating inference with score models

Training and testing score models with real measurements
Score models beyond 2D channels
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