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Plan for Today

1 Adapting language models (LMs) for hospital discharge summarization

2 Scalable optimization of LMs for healthcare tasks
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Motivation

1.

Health Care providers at One Medical need to manually look through hundreds of clinical

documents

Surfacing the most relevant clinical data can be accomplished with text summarization

This can allow for better health outcomes as it helps providers:

a. Save valuable time
b. Build a deeper connection with patients
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MIMIC-IV-BHC - Sample

Table 1. a) A sample of our novel pre-processed clinical notes dataset, extracted from raw MIMIC-IV notes.

Input Example

SEX F

SERVICE SURGERY

ALLERGIES No Known Allergies

CHIEF COMPLAINT Splenic laceration

MAJOR PROCEDURE NONE

HISTORY OF PRESENT ILLNESS s/p routine colonoscopy this morning with polypectomy (report not available) ...
PAST MEDICAL HISTORY Mild asthma, hypothyroid

FAMILY HISTORY Non-contributory

PHYSICAL EXAM Gen: Awake and alert CV: RRR Lungs: CTAB Abd: Soft, nontender, nondistended
PERTINENT RESULTS 03:45 PM BLOOD WBC-5.5 RBC-3.95 Hgb-14.1 ...

MEDICATIONS ON ADMISSION 1. Levothyroxine Sodium 100 mcg PO DAILY 2. Flovent HFA (fluticasone) ...
DISCHARGE DISPOSITION Home

DISCHARGE DIAGNOSIS Splenic laceration

DISCHARGE CONDITION Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive ...
DISCHARGE INSTRUCTIONS You were admitted to ... in the intensive care unit for monitoring after a ...



MIMIC-IV-BHC - Sample

Table 1. a) A sample of our novel pre-processed clinical notes dataset, extracted from raw MIMIC-IV notes.

Input Example

SEX F

SERVICE SURGERY

ALLERGIES No Known Allergies

CHIEF COMPLAINT Splenic laceration

MAJOR PROCEDURE NONE

HISTORY OF PRESENT ILLNESS s/p routine colonoscopy this morning with polypectomy (report not available) ...
PAST MEDICAL HISTORY Mild asthma, hypothyroid

FAMILY HISTORY Non-contributory

PHYSICAL EXAM Gen: Awake and alert CV: RRR Lungs: CTAB Abd: Soft, nontender, nondistended
PERTINENT RESULTS 03:45 PM BLOOD WBC-5.5 RBC-3.95 Hgb-14.1 ...

MEDICATIONS ON ADMISSION 1. Levothyroxine Sodium 100 mcg PO DAILY 2. Flovent HFA (fluticasone) ...
DISCHARGE DISPOSITION Home

DISCHARGE DIAGNOSIS Splenic laceration

DISCHARGE CONDITION Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive ...
DISCHARGE INSTRUCTIONS You were admitted to ... in the intensive care unit for monitoring after a ...

Output Example

BRIEF HOSPITAL COURSE Ms. ... was admitted to ... on .... After getting a colonoscopy and polypectomy, she ...




MIMIC-IV-Ext-BHC: Labeled Clinical Notes Dataset for Hospital
Course Summarization

Asad Aali @, Dave Van Veen @, Yamin Arefeen @ , Jason Hom @, Christian Bluethgen @, Eduardo Pontes Reis @, Sergios Gatidis @,
Namuun Clifford @ , Joseph Daws @, Arash Tehrani @, Jangwon Kim @, Akshay Chaudhari @

1. A curated collection of preprocessed and labeled clinical notes derived from the MIMIC-1V-Note
database.

2. To facilitate development and training of machine learning models focused on summarizing brief
hospital courses (BHC)

3. 270,033 meticulously cleaned and standardized clinical notes containing an average token length
of 2,267

4. Preprocessing pipeline employed uses regular expressions to address common issues in the raw
clinical text

Published on PhysioNet
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Pipeline

increasing model size (hnumber of parameters)
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Pipeline
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Summarize the following clinical note: Brief Hospital Course: [example]
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Overview of Adaptation Methods
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Overview of Adaptation Methods

LoRA

Tuning Low-rank adaptation, approximates
nexpensive gradent-based | fine-tuning process by injecting r.ank
decomposition matrices
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Model Performance Analysis
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BERT-Score

Context Length Analysis

a) In-Distribution Context Length Analysis
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BERT-Score

Context Length Analysis

a) In-Distribution Context Length Analysis b) Out-of-Distribution Context Length Analysis
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a) Reader Study - Overall Scores
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Summarization Example

[ Expertise ] | You are an expert medical professional

[ Instruction ] | Summarize the clinical note into a brief hospital course




Summarization Example

[ Expertise ] | You are an expert medical professional

[ Instruction ] | Summarize the clinical note into a brief hospital course

In-Context Use the examples to guide word choice
input: {fexample clinical note}

E)(ample summary: {examp/e th}




Summarization Example

[ Expertise ] | You are an expert medical professional

[ Instruction ] | Summarize the clinical note into a brief hospital course

0 N
In-Context Use the examples to guide word choice

input: {fexample clinical note}

E)(ample summary: {examp/e th}

. 4
a N
SEX: F

SERVICE: OBSTETRICS/GYNECOLOGY

ALLERGIES: No Known Allergies / Adverse Drug Reactions

ATTENDING: __.

CHIEF COMPLAINT: bleeding in pregnancy

MAJOR SURGICAL OR INVASIVE PROCEDURE: None

HISTORY OF PRESENT ILLNESS: _ G4PO (h/0) TABx 3 @ __ admitted with vaginal bleeding that started 4 days prior.

PAST MEDICAL HISTORY: abnormal pap smears anxiety depression warts colposcopy, LEEP___ TAB x 3 marginal cord insert fibroadenoma of the breast

SOCIAL HISTORY: __

Clinical Note
Input

FAMILY HISTORY: noncontributory

PHYSICAL EXAM: VS: 98.3, 109/69, 75, 20, 02 97% Gen: NAD Resp: No evidence of respiratory di Abd: Soft, der Ext: No lower extremity edema Date: ___ Time: 09: 00 FHT: 130s/mod variability/+accels/-decels (?
quick deep variable x 1, assoc w/ loss of pickup); otherwise reactive Toco: rare ctx

PERTINENT RESULTS: ___ 05: 10PM WBC-9.3 RBC-4.24 HGB-13.7 HCT-39.3 MCV-93 MCH-32.3* MCHC-34.9 RDW-13.0 RDWSD-43.7 ___ 05: 10PM PLT COUNT-229___ 05: 10PM __ PTT-28.6______ 05:10PM ___
MEDICATIONS ON ADMISSION: PNV

DISCHARGE MEDICATIONS: 1. Citalopram 20 mg PO QHS 2. Prenatal Vitamins 1 TAB PO DAILY

DISCHARGE DISPOSITION: Home
DISCHARGE DIAGNOSIS: Marginal cord insertion Vaginal bleeding in pregnancy
DISCHARGE CONDITION: Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive. Activity Status: Ambulatory - Independent.

FOLLOWUP INSTRUCTIONS: ___

\ / DISCHARGE INSTRUCTIONS: Please continue pelvic rest. Avoid heavy lifting or strenuous activity. Otherwise normal activity.




Summarization Example

[

Expertise

] | You are an expert medical professional

[ Instruction ] | Summarize the clinical note into a brief hospital course

y

In-Context
Example

~

Use the examples to guide word choice
input: {fexample clinical note}
summary: {example bhc}

-

Clinical Note

~

SEX:F

SERVICE: OBSTETRICS/GYNECOLOGY

ALLERGIES: No Known Allergies / Adverse Drug Reactions

ATTENDING: ___.

CHIEF COMPLAINT: bleeding in pregnancy

MAJOR SURGICAL OR INVASIVE PROCEDURE: None

HISTORY OF PRESENT ILLNESS: __ G4PO (h/0) TABx 3 @ __ admitted with vaginal bleeding that started 4 days prior.

PAST MEDICAL HISTORY: abnormal pap smears anxiety depression warts colposcopy, LEEP___ TAB x 3 marginal cord insert fibroadenoma of the breast
SOCIAL HISTORY: __

FAMILY HISTORY: noncontributory

Input
p PHYSICAL EXAM: VS: 98.3, 109/69, 75, 20, 02 97% Gen: NAD Resp: No evidence of respiratory distress Abd: Soft, non-tender Ext: No lower extremity edema Date: ___ Time: 09: 00 FHT: 130s/mod variability/+accels/-decels (?
quick deep variable x 1, assoc w/ loss of pickup); otherwise reactive Toco: rare ctx
PERTINENT RESULTS: ___ 05: 10PM WBC-9.3 RBC-4.24 HGB-13.7 HCT-39.3 MCV-93 MCH-32.3* MCHC-34.9 RDW-13.0 RDWSD-43.7 ___ 05: 10PM PLT COUNT-229___ 05: 10PM __ PTT-28.6___ ___ 05:10PM ___
MEDICATIONS ON ADMISSION: PNV
DISCHARGE MEDICATIONS: 1. Citalopram 20 mg PO QHS 2. Prenatal Vitamins 1 TAB PO DAILY
DISCHARGE DISPOSITION: Home
DISCHARGE DIAGNOSIS: Marginal cord insertion Vaginal bleeding in pregnancy
DISCHARGE CONDITION: Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive. Activity Status: Ambulatory - Independent.
FOLLOWUP INSTRUCTIONS: ___
\ / DISCHARGE INSTRUCTIONS: Please continue pelvic rest. Avoid heavy lifting or strenuous activity. Otherwise normal activity.
>
Summary 1 Pt was Rh positive and admitted for vaginal bleeding. She had negative cultures (GBS and yeast, GC/CT/trich). She had spotting from admission until ___.
Clinician She was monitored until ___. She was discharged home in a stable continue without any evidence of | bleeding or spotting.
@ I
Summary 2 Ms. was admitted under the care of Dr. due to vaginal bleeding during her pregnancy. She has a history of abnormal pap smears, anxiety,
ry depression, and fibroadenoma of the breast. No surgical procedures were performed during her stay. Her condition was monitored and managed with
GPT-4 prenatal vitamins and Citalopram for her anxiety. She was discharged in a clear and coherent mental state, able to move independently. She was instructed
L ) to continue pelvic rest and avoid heavy lifting or strenuous activity. She will continue her care at home.




Summarization Example

[

Expertise ] | You are an expert medical professional

[

Instruction ] | Summarize the clinical note into a brief hospital course

y

<4
In-Context

Example

Use the examples to guide word choice
input: {fexample clinical note}
summary: {example bhc}

-

~4

Clinical Note

SEX:F

SERVICE: OBSTETRICS/GYNECOLOGY

ALLERGIES: No Known Allergies / Adverse Drug Reactions

ATTENDING: __.

CHIEF COMPLAINT: bleeding in pregnancy

MAJOR SURGICAL OR INVASIVE PROCEDURE: None

HISTORY OF PRESENT ILLNESS: __ G4PO (h/0) TABx 3 @ __ admitted with vaginal bleeding that started 4 days prior.

PAST MEDICAL HISTORY: abnormal pap smears anxiety depression warts colposcopy, LEEP__ TAB x 3 marginal cord insert fibroadenoma of the breast
SOCIAL HISTORY: __

FAMILY HISTORY: noncontributory

Input
p PHYSICAL EXAM: VS: 98.3, 109/69, 75, 20, 02 97% Gen: NAD Resp: No evidence of respiratory distress Abd: Soft, non-tender Ext: No lower extremity edema Date: ___ Time: 09: 00 FHT: 130s/mod variability/+accels/-decels (?

quick deep variable x 1, assoc w/ loss of pickup); otherwise reactive Toco: rare ctx
PERTINENT RESULTS: ___ 05: 10PM WBC-9.3 RBC-4.24 HGB-13.7 HCT-39.3 MCV-93 MCH-32.3* MCHC-34.9 RDW-13.0 RDWSD-43.7 ___ 05: 10PM PLT COUNT-229___ 05: 10PM __ PTT-28.6 ___ ___ 05:10PM ___
MEDICATIONS ON ADMISSION: PNV
DISCHARGE MEDICATIONS: 1. Citalopram 20 mg PO QHS 2. Prenatal Vitamins 1 TAB PO DAILY
DISCHARGE DISPOSITION: Home
DISCHARGE DIAGNOSIS: Marginal cord insertion Vaginal bleeding in pregnancy
DISCHARGE CONDITION: Mental Status: Clear and coherent. Level of Consciousness: Alert and interactive. Activity Status: Ambulatory - Independent.
FOLLOWUP INSTRUCTIONS: ___

\ / DISCHARGE INSTRUCTIONS: Please continue pelvic rest. Avoid heavy lifting or strenuous activity. Otherwise normal activity.

>

Summary 1 Pt was Rh positive and admitted for vaginal bleeding. She had negative cultures (GBS and yeast, GC/CT/trich). She had spotting from admission until ___.
Clinician She was monitored until ___. She was discharged home in a stable continue without any evidence of vaginal bleeding or spotting.
. J
@ N\
Summa 2 Ms. was admitted under the care of Dr. due to vaginal bleeding during her pregnancy. She has a history of abnormal pap smears, anxiety,
ry depression, and fibroadenoma of the breast. No surgical procedures were performed during her stay. Her condition was monitored and managed with
GPT-4 prenatal vitamins and Citalopram for her anxiety. She was discharged in a clear and coherent mental state, able to move independently. She was instructed

to continue pelvic rest and avoid heavy lifting or strenuous activity. She will continue her care at home.

& 4

( %) I S} . : . : . . . o .

Reader Summary A (Clinician) contains multiple factual mistakes (serial ultrasounds, no evidence of vaginal bleeding, closed cervix, negative culture). It seems to
Feedback contain information not at all present in the actual clinical note. Summary B (GPT-4) failed to mention a summary of the patients labs or vital signs, but
L eedbac ) | otherwise looks great.




Conclusions

1. Adapted open-source models can match the quality of clinician-written summaries
2. Adapted proprietary models can outperform the quality of clinician-written summaries

3. Adapted LLMs for summarization have the potential to:
a. streamline documentation
b. reduce errors
c. enhance clinical workflows
d. improve patient safety
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Motivation

Language models (LMs) have significantly advanced natural language processing capabilities

* Their deployment is often constrained by the necessity for extensive fine-tuning

* Goal: Enhance LM performance through refined prompt engineering without necessitating model
fine-tuning

* Plan: Systematically evaluate prompt engineering techniques across:
* a variety of healthcare tasks
* open-source and closed-source LMs

Stanford University



Introducing DSPy

* Declarative Self-improving Python

https://dspy.ai/

* A framework for algorithmically optimizing prompts and LM weights

* Developed by the Stanford NLP Group

Stanford University


https://dspy.ai/
https://nlp.stanford.edu/

DSPy Optimizers

1. "give examples within prompt": BootstrapFewShot
2. "tune the instructions": oprO

3. "tune the instructions + examples in prompt": MiPROv2

References:
1. Opsahl-Ong, Krista, et al. "Optimizing instructions and demonstrations for multi-stage language model programs." arXiv preprint arXiv:2406.11695 (2024).
2. Khattab, Omar, et al. "Dspy: Compiling declarative language model calls into self-improving pipelines." arXiv preprint arXiv:2310.03714 (2023).

Stanford University



"give examples within prompt":
BootstrapFewShot

1. Randomly sample examples from your training set
2. |If the output from the program is correct for this example, it is kept as a valid few-shot
3. Try more examples until curated a specified amount of few-shot example candidates.

Bootstrap Random Search
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References:
1. Opsahl-Ong, Krista, et al. "Optimizing instructions and demonstrations for multi-stage language model programs." arXiv preprint arXiv:2406.11695 (2024).
2. Khattab, Omar, et al. "Dspy: Compiling declarative language model calls into self-improving pipelines." arXiv preprint arXiv:2310.03714 (2023).

Stanford University



"tune the instructions”": OPRO

1. Propose instruction candidates for each predictor in the program.
a. It bootstraps & summarizes relevant information about the task to propose instructions
2. The instruction proposer includes
a generated summary of properties of the training dataset
a generated summary of your LM program's code and the specific predictor
previously bootstrapped few-shot examples to show reference inputs / outputs
a randomly sampled tip for generation (i.e. "be creative", "be concise", etc.)

oo D

Module-Level OPRO

For each module m in ¢ :

=2 o= -

History Instruction ‘

!

<Instruction, Score>

........................................................................

References:
1. Opsahl-Ong, Krista, et al. "Optimizing instructions and demonstrations for multi-stage language model programs." arXiv preprint arXiv:2406.11695 (2024).
2. Khattab, Omar, et al. "Dspy: Compiling declarative language model calls into self-improving pipelines." arXiv preprint arXiv:2310.03714 (2023).

Stanford University



"tune the instructions + examples in prompt"
MIPROv2

1. Bootstrap Few-Shot Examples: BootstrapFewShot
2. Propose Instruction Candidates: OPRO
3. Find an Optimized Combination of Few-Shot Examples & Instructions

MIPRO
1 @ Bootstrap Demonstrations “: @Propose Instruction Candidates @ Search Combinations
For each module m in ¢ : i 1 For each module m in  : ; :

b "‘Gﬁ" </> : i
Input Outputs - Summary N
i D ‘ — — —’Ui _'"" O E 5 E-g‘ Summary 6’5 - i i Bayes {
: Program$ Metric [ : U e Search

Demos 1k
N Instructions:
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Preliminary Results

With DSPy optimizers, we were able to exceed accuracy performance on the MedQA public leaderboard:
* gpt-40-mini 72.4% -> 79.3%
* [lama3.1-8b 62.6% -> 66.7%
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