APRIL 2024

Generative Priors for Accelerated MRI Reconstruction

Guest Lecture Machine Learning II (COSC-4380) Austin Community College (ACC)

Asad Aali, MS Electrical & Computer Engineering The University of Texas at Austin

UT Computational Sensing and Imaging Lab

- Joint design of imaging system and software
- Particular focus on application to MRI
- Work with clinicians to translate work to hospital

Jon Tamir, PhD Assistant Professor, ECE, UT Austin <u>http://www.jtsense.com/</u>

https://github.com/utcsilab

Computational MRI

Deep learning inversion for MRI

- 1. End-to-end supervised training
- 2. Distribution learning / generative modeling

Generative models are powerful image generators

T Karras et al., CVPR 2020

Generative models are powerful image generators

https://thiscatdoesnotexist.com/

Generative models are powerful image generators

Generative model trained on FastMRI data

MRI: Problem Formulation

Signal is the Fourier transform of the image y = Ax + noise

Score-based generative models

Goal is to learn the **clean distribution** using *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = Ax + noise

Original K-Space

Goal is to learn the **clean distribution** using *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = Ax + noise

Original K-Space

Coil Images

Goal is to learn the **clean distribution** using *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = Ax + noise

Goal is to learn the **clean distribution** using *noisy* data (i.i.d Gaussian, with known power σ_w^2).

y = Ax + noise

Denoising with GSURE

Original FastMRI

Denoising with GSURE

Original FastMRI

Original FastMRI

+ Additive Gaussian Noise

Denoising with GSURE

Learning Priors using Generative Models -p(x)

Naive Score

Learning Priors using Generative Models -p(x)

Inverse Problems using Generative Models $x \sim p(x|y)$

Fully Sampled

Naive Score

GSURE-Score

Conclusions

- 1. Self-supervised techniques like GSURE can successfully remove noise
- 2. Denoising as a pre-processing step, severely improves the quality of generative priors
- 3. Priors trained on denoised FastMRI are better inverse problem solvers than naive training

Thank you!

Asad Aali asad.aali@utexas.edu https://asadaali.com/

MS ECE Student The University of Texas at Austin

