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Target Audience: MRI researchers interested in image reconstruction and deep learning.  
Introduction: Volumetric fast spin-echo (3DFSE) is desirable for multi-planar 
reformatting, but it has not been routinely used clinically due to T2-decay induced 
blurring1-3. Recently, a method called T2 Shuffling (T2Sh) has been proposed which 
generates images along the FSE signal relaxation curve, thus reducing blur and providing 
multi-contrast images4. While this approach has been shown to be noninferior to clinical 
2D FSE5,6, it still requires scan times in excess of 7 minutes5. Recently deep learning-
based score models have been applied to MRI with promising reconstruction results with 
under-sampling, exceeding the performance of traditional compressed sensing methods.7 
In this work, we train the score model to learn a prior that is used to reconstruct T2Sh 
data through posterior sampling8. We use the basis coefficient images from the low-rank 
T2Sh reconstruction to train the score model and apply posterior sampling to 
retrospectively accelerated data with no model mismatch. We show performance over 
different acquisition signal-to-noise (SNR) levels in this setting. Finally, we show 
preliminary results of our approach for experimentally acquired under-sampled T2Sh 
data.  
Methods: For this work, we trained the score model on 5000 basis coefficient knee 
images, which were acquired with IRB approval and informed consent/assent. As the 
score model is only trained on basis images, it is agnostic to MRI sampling and hence it 
can be customized to different sequence parameters. The T2Sh forward model is as follows: 
𝑦 = 𝑃𝐹𝑆Φ𝛼 +𝑤,			𝑤 ∼ 𝑁	(0, 𝜎!𝐼)  where 𝛼 ∈ 𝐶"  are the basis coefficient images, Φ ∈
𝑅#×" is the basis, 𝑆	is the coil sensitivity maps, 𝐹 is the Fourier transform operator, 𝑃	is the 
k-space sampler, and 𝑤	is Gaussian noise. 𝑇	is the FSE echo train length (ETL) and 𝐾	is the 
number of basis coefficients. We define the forward operator as 𝐴 = 𝑃𝐹𝑆Φ. The MRI 
reconstruction is done using posterior sampling which uses Annealed Langevin Dynamics7 
as follows: α%&' ← α% 	+ η%<s((α%) + β%A)(y − Aα%)B + √(2η%)	ζ%	, ζ% ∼ N(0, I)	where 𝛼* 
are the estimated basis coefficient images at step t, 𝜂* is the learning rate, 𝑠+ is the score 
model output, 𝛽*	is the weight of the data consistency term, 𝐴, is the adjoint of the forward 
operator, and 𝜁* is the annealing noise. For the first set of experiments, the under-sampled 
k-space data is generated from the forward model as a proof of principle to show that the 
score model-based posterior sampling can reconstruct coefficient images, noting that this is 
an inverse crime9. For this set of results, we treat T2Sh reconstruction as a “ground truth.” 
In the second set of results, we incorporate varying SNR levels in the forward model and 
compare the reconstruction results. For the third set of 
results, we run the posterior sampling on experimental 
under-sampled T2Sh k-space data.   
Results and Discussion: Fig. 2 shows the reconstructed 
basis coefficient images after posterior sampling using 
the prior provided by the score model. The reconstructed 
coefficient images and the ground truth coefficients agree 
very well as corroborated by the low normalized root 
mean squared error (NRMSE). Fig. 3 shows the effect of 
different SNR levels. Noise is added to the under-
sampled k-space data corresponding to different SNR 
values. It can be observed that as SNR increases, the 
NRMSE for all 3 coefficients decreases. Fig. 4 shows the comparison between the output from 
T2Sh and the score-based posterior sampling on the experimental data. Coefficient images seem 
to qualitatively match both methods except for the 3rd coefficient image.  For future work, we 
will focus on improving score model posterior sampling to handle variation in SNR across the 
basis images and experimental k-space data. 
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Fig 1. A) Overview of the training process of 
the score model. Training involves choosing 
random noise levels at different steps and 
adding them to the training samples and 
making the score model predict the gradient. 
B) Basis coefficient estimation using posterior 
sampling from a given k-space measurements 
y.  

Fig 2. Reconstructed basis coefficient images 
and ground truth coefficient images along with 
difference image with 10X zoom.  
 

 

 

 

 

 
 
 
 
 

Fig.  3. NRMSE vs SNR for reconstructed 
basis coefficient images. 

Fig.  4. Score model and T2Sh output images 
on experimental k-space data. 


